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Abstract. Automated detection and segmentation of kidney tumors from 3D CT 

images is very useful for doctors to make diagnosis and treatment plan. In this 

paper, we described a multi-stage semantic segmentation pipeline for kidney and 

tumor segmentation from 3D CT images based on 3D U-Net architecture. The 

current method can achieve 0.9674,0.8454 average dice for kidney and tumor 

and achieved the 2nd place in the KiTS19 challenge.   
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1 Introduction 

There are more than 400,000 new cases of kidney cancer each year, and surgery is its 

most common treatment. Due to the wide variety in kidney and kidney tumor morphol-

ogy, there is currently great interest in how tumor morphology relates to surgical out-

comes, as well as in developing advanced surgical planning techniques. Automatic se-

mantic segmentation is a promising tool for these efforts, but morphological heteroge-

neity makes it a difficult problem. 

The goal of KiTS19 challenge
 [1] is to accelerate the development of reliable kidney 

and kidney tumor semantic segmentation methodologies. The challenge organizers 

have produced ground truth semantic segmentations for arterial phase abdominal CT 

scans of 300 unique kidney cancer patients who underwent partial or radical nephrec-

tomy at our institution. 210 of these have been released for model training and valida-

tion, and the remaining 90 will be held out for objective model evaluation. 

 
Fig. 1. An example of 2D axial slice of 3D CT images. The kidney class is shown in 

red and the tumor is shown in green.    
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Automated detection and segmentation of 3D kidney tumors can help doctors quickly 

locate the tumors and provide accurate reproducible results for further quantification 

analysis. Semantic segmentation CNNS with encoder-decoder architecture have been 

widely used for multimodal brain tumor segmentation challenge, liver tumor segmen-

tation challenge, etc. In the work, motivated by the nnUNet [2], we propose a three-stage 

neural network to locate and segment the kidney and tumor from 3D volumetric CT 

images. We describe our pipeline in the following section.   

2 Methods 

Our three-stage semantic segmentation pipeline consists of three steps, firstly get the 

coarse location of kidney and tumor based on a lightweight low-resolution 3D U-Net 

from 3D CT images with low resolution, and then crop the left/right VOI and get the 

accurate kidney and tumor location based on  a high-resolution 3D U-Net with the same 

architecture(treat kidney and tumor as only one class), and thirdly classify the kidney 

and tumor region based on third segmentation model, and finally adopt some post-pro-

cessing method to fill the holes inside the tumor and remove some false positives. All 

the models are trained from scratch with 5-fold cross-validation. 

 
Fig. 2. The architecture of our three-stage segmentation pipeline.  

 

2.1 Stage 1 and Stage 2 

The stage 1 and stage 2 is based on the nnUNet, nnUNet supports 2D, 3D, 3D Cascade 

mode and we use the 3D cascade architecture as our stage 1 and stage 2 after some 

modifications. The first stage preprocesses the training 3D CT images to spacing 

1.71548519x1.71548519x3.41427984 through down sampling and train the low-reso-

lution U-Net model with a patch size of 128x128x96.The second stage preprocesses 

3D CT images to spacing 0.781625x0.781625x0.781625 through up sampling and 

crops the VOI of kidney regions as the training dataset and train the high-resolution U-

Net model with a patch size of 192x160x56.  
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2.2 Stage 3 – Tumor 3D U-Net 

The stage 3 is used for segmenting the tumor foreground from kidney background, its 

encoder and decoder structure are as follows. We set the voxels intensities outside the 

kidney regions to zero during training procedure. 

 

Table 1. Encoder structure, where IN stands for instance normalization, Conv-3x3x3 

convolution with a stride size of 1x1x1, Conv stride 2x2x1 with a stride size of 2x2x2. 

 

 
Name Ops Output size 

Input  1x160x160x56 

InitConv Conv, IN, LeakyReLU 30x160x160x56 

EncoderBlock0 Conv, IN, LeakyReLU 

EncoderDown1 Conv stride 2x2x1, IN, LeakyReLU 60*80x80x56 

EncoderBlock1 Conv, IN, LeakyReLU 

EncoderDown2 Conv stride 2x2x1, IN, LeakyReLU 120*40x40x56 

EncoderBlock2 Conv, IN, LeakyReLU 

EncoderDown3 Conv stride 2x2x2, IN, LeakyReLU 240*20x20x28 

EncoderBlock3 Conv, IN, LeakyReLU 

EncoderDown4 Conv stride 2x2x2, IN, LeakyReLU 320*10x10x14 

EncoderBlock4 Conv, IN, LeakyReLU 

EncoderDown5 Conv stride 2x2x2, IN, LeakyReLU 320*5x5x7 

EncoderBlock5 Conv, IN, LeakyReLU 

 

Table 2. Decoder structure,  stands for feature concatenation of decoder up and skin 

connection from encoder, where IN stands for instance normalization, Conv-3x3x3 

convolution with a stride size of 1x1x1, Conv1-1x1x1 convolution. 
Name Ops Output size 

DecoderUp4 ConvTranspose3d 320x10x10x14 

DecoderBlock4 EncoderBlock4, Conv1, IN, LeakyReLU, Conv, IN, LeakyReLU 

DecoderUp3 ConvTranspose3d 240x20x20x28 

DecoderBlock3 EncoderBlock2, Conv1, IN, LeakyReLU, Conv, IN, LeakyReLU 

DecoderUp2 ConvTranspose3d 120x40x40x56 

DecoderBlock2 EncoderBlock2, Conv1, IN, LeakyReLU, Conv, IN, LeakyReLU 

DecoderUp1 ConvTranspose3d 60x80x80x56 

DecoderBlock1 EncoderBlock1, Conv1, IN, LeakyReLU, Conv, IN, LeakyReLU 

DecoderUp0 ConvTranspose3d 120x160x160x56 

DecoderBlock0 EncoderBlock0, Conv1, IN, LeakyReLU, Conv, IN, LeakyReLU 

DecoderEnd Conv1, Softmax 1x160x160x56 

 

2.3 Data preprocessing and augmentation 

Because the intensity distribution of CT scans is very different, we normalize all input 

images to zero mean and unit std (based on foreground voxels only). The data augmen-

tation methods include elastic deformation, rotation transform, gamma transformation, 

random cropping, etc. 

 

2.4 Loss and Optimization 

We train the model with the combination of dice loss and cross entropy loss and use 

Adam optimizer with initial learning rate of 1e-4. During training, we keep an 
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exponential moving average of the validation and training losses. Whenever training 

loss did not improve by at least  5 ∗ 103within the last 30 epochs, the learning rate 

was reduced by factor 5. The training was terminated automatically if validation loss 

did not improve by more than 5 ∗ 103within the last 50 epochs.  

3 Results 

We report the preliminary results using the test data provided by KiTS19 challenge. 

The test dataset contains 90 cases without annotations. We uploaded our segmentation 

results to the KiTS19 server for evaluation of per class dice. An example of our predic-

tion results is depicted in Fig. 3. 

 

  
Fig. 3. An example of prediction results of case 220. The kidney class is shown in red 

and the tumor is shown in green.   

 

We implemented out network in PyTorch and trained it on NVIDIA Tesla V100 GPU. 

Table 1 shows the results of our model on the KiTS19 challenge test dataset. 

 

Table 3. Mean dice of the proposed three-stage semantic segmentation pipeline on 

KiTS19 test dataset. 

 Kidney Tumor 

Average Dice on Test Dataset 0.9674 0.8454 

  

4 Conclusion 

We described a three-stage semantic segmentation pipeline for kidney and tumor seg-

mentation from 3D CT images. Preliminary results on KiTS19 challenge test results are 

0.9674, 0.8454 average dice for kidney and tumor respectively.   
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