
Segmentation of Kidney and Renal Tumor in CT Scans 

Using Convolutional Networks 

Shaofeng Yuan1, Feng Yang2, Yujiao Tang2, Yanyan Xing2, Liyun Zhang2 

1 Shanghai United Imaging Healthcare Co. Ltd., Shanghai, China 

shaofeng.yuan.smu@gmail.com 

shaofeng.yuan@united-imaging.com 
2 Guangdong Provincial Key Laboratory of Medical Image Processing, School of Biomedical 

Engineering, Southern Medical University, Guangzhou, China 

yangf@smu.edu.cn 

Abstract. Accurate segmentation of kidney and renal tumor in CT images is a 

prerequisite step in surgery planning. However, this task remains a challenge. In 

this report, we use convolutional networks (ConvNet) to automatically segment 

kidney and renal tumor. Specifically, we adopt a 2D ConvNet to select a range 

of slices to be segmented in the inference phase for accelerating segmentation, 

while a 3D ConvNet is trained to segment regions of interest in the above nar-

row range. In localization phase, CT images from several publicly available da-

tasets were used for learning localizer. This localizer aims to filter out slices 

impossible containing kidney and renal tumor, and it was fine-tuned from 

AlexNet pre-trained on ImageNet. In segmentation phase, a simple U-net with 

large patch size (160×160×80) was trained to delineate contours of kidney 

and renal tumor. In the 2019 MICCAI Kidney Tumor Segmentation (KiTS19) 

Challenge, 5-fold cross-validation was performed on the training set. 168 (80%) 

CT scans were used for training and remaining 42 (20%) cases were used for 

validation. The resulting average Dice similarity coefficients are 0.9662 and 

0.7905 for kidney and renal tumor, respectively. 

Keywords: Localization, Segmentation, Convolutional Networks, AlexNet, U-

net. 

1 Introduction 

There were more than 400,000 kidney cancer diagnoses worldwide in 2018 resulting 

in more than 175,000 deaths [1]. Accurate segmentation of kidney tissues and renal 

tumors in CT scans is challenging due to the following reasons: (1) large inhomoge-

neity of the kidney; (2) high anatomical variations between patients both kidney and 

tumor; (3) similar intensities and blurred boundaries of adjacent organs such as spleen 

and liver; (4) varying intensities due to contrast agent and capture time [2]. 

Many researchers have proposed a number of methods for (semi-) automatic seg-

mentation of kidney or kidney tumor from CT images. In recent years, deep learning 

based approaches have been widely used in medical image analysis [3-5]. Among 
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them, U-net and V-net are the most popular ones. However, Yang et al. [6] proposed 

3D FCN with pyramid pooling module for kidney and renal tumor segmentation, and 

obtained considerable improvement. Yu et al. [7] presented Crossbar-Net and cross-

bar patch sampling strategy devoting to 2D kidney tumor segmentation. In this report, 

we use simple 3D U-net with large patch size (160×160×80) to segment kidney and 

renal tumor. In order to accelerating the segmentation process in inference phase, we 

adopt slice-wise classification along the z-axis based on 2D ConvNet for determine a 

narrow range containing regions of interest. 

2 Methods 

2.1 Abdomen Localization Using 2D ConvNet 

Besides dedicated abdominal scans, the KiTS dataset contains some whole-body CT 

scans, which may be quite large and often varies a lot (as shown in Fig.1). If we can 

select a limited range along the z-axis, computation in the inference phase of segmen-

tation will be saved. A kidney is bounded by the abdomen, whatever it is healthy or 

pathological. Following [8], we perform slice-wise classification by assigning a cross-

section image to one of three classes: above abdomen, among abdomen and below 

abdomen. 

 

Fig. 1. Three whole-body CT scans from the KiTS training dataset. Red and green 

colors denote ground-truths of kidney and tumor. Yellow color denotes prediction of 

abdomen localizer. 

Several convolutional networks are tried to fine-tune to perform the slice-wise 

classification. We found the performance of AlexNet is better than VGGNet-16 with 

(a) case_00008 (b) case_00026 (c) case_00047
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batch normalization, ResNet-50 and DenseNet-121. A compelling feature of AlexNet 

is that at inference all z-axial slices can be stacked in an input tensor, and then fed 

into the trained network. The 2D input image along the z-axis is first resized to 256×

256, and then cropped randomly to 224×224. We performed random horizontal flip-

ping and random rotating for data augmentation. 

Training images in abdomen localization are from the LiTS Challenge, the 

LUNA16 (only subset0) and the MALBCV datasets. We used images from KiTS 

dataset as validation set. All annotations are labeled by authors using ITK-SNAP. The 

annotations include a small blue disk set at the bottom of the heart as the upper limit 

of the abdomen, and a small yellow disk set at the top of the pubic symphysis as the 

lower limit of the abdomen. 

2.2 Kidney and Renal Tumor Segmentation Using 3D ConvNet 

3D U-net [4] with five times pooling along the x-, y-axis and four times pooling along 

the z-axis and large patch size (160×160×80) was trained on the KiTS training set. 

Following [9], instance normalization layers are added to deep 3D U-net and all 

ReLU nonlinearities are replaced with leaky ReLU ones. The loss function in deep 3D 

U-net is the combination of Dice loss and cross entropy loss for Handling input and 

output imbalance problem. 

2.3 Implementation Details 

In abdomen localization, batch size of 1024 was used to fine-tune AlexNet pre-trained 

on ImageNet. SGD optimizer with initial learning rate of 0.008, momentum of 0.9, 

and epoch of 50 was used to update weights of network. In epoch 30, learning rate 

was halved. Weighted cross entropy loss was used, and weights of 3-class are 1.000, 

0.514 and 1.042, respectively. In kidney and renal tumor segmentation, due to large 

patch size, a small batch size of 2 was used to train 3D U-net from scratch. Adam 

optimizer with initial learning rate of 0.0003 and epoch of 500 was used. Weights of 

combining Dice loss and cross entropy loss are set 1.All steps have been implemented 

using PyTorch 0.4.1 and performed on a workstation with two GPUs of TITAN Xp. 

3 Results 

3.1 Datasets 

The experimental data in abdomen localization is collected from the LiTS Challenge1, 

the LUNA162 (only subset0) and the MALBCV3 datasets. Total 340 (201+89+50) 

cases are used to training abdomen localizer. The 210 cases from the KiTS Challenge4 

[10] are used as validation set. All these CT volumes are first re-sampled to 2 mm×2 

mm×2 mm, and then all axial images are resized to 256×256 pixels. For training 
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set, Class lower (lower the abdomen), Class middle and Class upper have 19,082, 

37,131 and 18,320 images. For validation set, three classes have 12,800, 34,123 and 

4,198 images. Obviously, in theory, 33% of images from the KiTS Challenge will be 

filtered out. 

The experimental data in segmentation is collected from the KiTS Challenge. 

There 210 cases in the training set, and 90 cases in the test set. We performed 5-fold 

cross-validation on the training set for evaluating the proposed loc+seg method. The 

segmentation results are obtained using ensemble of these 5 models. 

3.2 Evaluation metrics 

The rate of filtering out (FOR) non-ROI slices in a CT volume is used for evaluating 

abdomen localization. The Dice similarity coefficients of kidney and tumor are used 

for evaluating ROI segmentation and comparing U-net with several variants of V-net. 

3.3 Localization accuracy 

We found 28% of slices from 210 cases in the training set and 32% of slices from 90 

cases in the test set were filtered out. The localizer has two benefits, 1) filtering out 

non-ROI slices accelerating the next segmentation process, 2) filtering out non-ROI 

slices reducing false positive voxels due to misclassification of other organs or tissues 

similar to kidney and renal tumor. 

3.4 Segmentation accuracy 

Table 1 shows the Dice metrics of 5-fold cross-validation and the averaged Dice. The 

Dice score of kidney is very high, indicating the 3D U-net accurately delineates con-

tours of kidney. Although evaluations performed on different datasets, 3D U-net is 

better than 3D FCN with pyramid pooling module [6] with 3.5 points. However, as 

for tumor segmentation, the method proposed in [6] surpasses 3D U-net. Tumor seg-

mentation task need an elaborated ConvNet with more discriminative capacity. 

Table 2 shows the comparison of simple 3D U-net and several variants of V-net on 

Table 1. Five-fold cross-validation performance on the training set. 

 Kidney Renal tumor 

Fold 1 0.9710 0.7810 

Fold 2 0.9681 0.8135 

Fold 3 0.9533 0.7557 

Fold 4 0.9674 0.8038 

Fold 5 0.9711 0.7985 

Average 0.9662 0.7905 



kidney segmentation. NestedV-net is a nested V-net architecture, similar to UNet++ 

[11]. DualAttV-net is V-net with position and channel dual attention modules [12]. 

AttGatedV-net  is V-net with attention gate mechanism, similar to attention gated net-

works [13]. DualAttGatedV-net is V-net with dual attention module and attention gate mod-

ule. Simple 3D U-net surpasses V-net and variants of V-net because of these complex 

networks may be more difficult to be tuned and optimized. 

Fig.2 shows three examples of kidney and renal tumor segmentation with different 

tumor size. In general, 3D U-net accurately delineates contours of kidney. However, 

in details, there is still room for improvement. 

Table 2. Comparison of 3D U-net, V-net and variants of V-net. Dice scores computed on the 

last 10 cases from training set. 

 3D U-net1 3D U-net2 3D V-net  

Kidney 0.9742 0.9661 0.9598  

 NestedV-net DualAttV-net AttGatedV-net DualAttGatedV-net 

Kidney 0.8966 0.9448 0.9564 0.9382 

 

Fig. 2. Three examples of kidney and tumor segmentation with different tumor sizes 

from the KiTS training dataset. The first row lists ground-truths of kidney and tumor, 

and the second row shows predictions from 3D U-net. 

4 Conclusions 

In conclusion, an abdomen localizer and a kidney tumor segmentor are used to pro-

cess data from the KiTS Challenge. The initial experimental results on KiTS 2019 

(a) case_00054 (b) case_00196 (c) case_00056
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training set show the superiority of our simple but effective method for segmentation 

of kidney and renal tumor. In the future, we pay more attention to improve the seg-

mentation performance of tumor. 
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