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Abstract. In this manuscript, an automated solution is presented for the kidney 

lesion segmentation. The proposed method consists of two-stage learning pro-

cedures which generating prediction masks for kidney and lesion respectively. 

Since we adopt 2D axial images from CT scans as evaluation data, it is critical 

to extract sufficient contextual information for capturing the objects varied sig-

nificantly in appearance within different slices. Hence, we redesign an encoder-

decoder network for more effective feature representations learning. We evalu-

ate our method on 2019 Kidney Tumor Segmentation Challenge. There are total 

210 labeled CT scans released as training and validation data. The source code 

can be found at: https://github.com/Zakiyi/kits_2019_segmentation_challenge. 
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1 Introduction 

    Kidney cancer, characterized by malignant tumor arising from the renal parenchy-

ma and renal pelvis, is a common form of cancer affecting adults [1]. This disease, 

however, is highly curable when treated in the early stage. Clinically, imaging test 

such as CT scans is an important method for identifying kidney tumor or abnormality. 

Automated delineation of kidney and lesion within images can be of immense help in 

pre-surgical planning for the treatment, because useful information like tumor size, 

shape, etc., can be obtained. Indeed, over the past few decades, a considerable amount 

of studies have been devoted to develop algorithms toward intelligent kidney lesion 

segmentation. Nevertheless, artifacts, large inhomogeneity of the kidney (cortex and 

medulla), and similar intensities of adjacent organs, pose huge challenges in the de-

velopment of accurate image analysis system. 

Recently, significant improvements in medical image segmentation have been ob-

tained by using deep convolutional neural network (CNN). However, only few studies 

exploited the deep learning based method for kidney CT image segmentation till now. 

The crucial consideration of applying CNN in dense predication lies in satisfying 

simultaneously the demands of multi-scale reasoning and full-resolution output [2]. In 

this regard, the most successful architecture in current field of medical image segmen-

tation is U-Net [3], which constructed with an encoder path and a decoder path. Hier-

archical features are first learned by encoder path, and then decoder path gradually 

https://github.com/Zakiyi/kits_2019_segmentation_challenge
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recovers detail information by fusing counterpart features from encoder path via skip 

connections.  

In this article, we present a dense pyramid context encoder decoder network for 

kidney lesion segmentation based on original U-Net. Although most existing studies 

using pre-trained model from natural image classification task as the backbone of 

feature encoding path and superior performance can be achieved by fine-tuning, these  

 

 

Fig. 1. Proposed network architecture for the kidney lesion segmentation, the entire model is 

similar to U-net, while we re-designed the basic components of encoder part and decoder part. 

Fig 1 (a) represents the encoder block, which consists of several pyramid dilated convolutional 

models (PDC model) and a recalibration model; Fig 2 (b) illustrates the architecture of the 

decoder block, each of them incudes two separable convolution layers and a recalibration mod-

el;  The  construction of PDC model and recalibration model was presented in (c) and (d) re-

spectively. 

methods have a restricted network designing space. In contract, the proposed model 

incorporates a series of popular designing elements in computer vision includes dense 

connection, separable convolution, pyramid dilated convolution and feature recalibra-

tion based on channel and spatial attention mechanism [4-8], the details can be seen in 

Fig 1 and Table 1. Our goal is to aggregate sufficient multi-scale contextual infor-

mation and learn more effective feature representations.  
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2 Methodology 

The proposed solution mainly includes two stages, each stage was formulated as a 

binary segmentation task by training a corresponding neural network. Specifically, we 

treat kidney and lesion as same category in the first stage, and the prediction output of 

the well-trained network are multiplied with input image to locate region of interest. 

In the second stage, these masked images are used to training another network with 

only lesion as foreground output. It is worth noting that we did not utilize any post 

processing. The entire pipeline is shown in Fig 2. 

 

 

Fig. 2. The pipeline of the proposed solution for the kidney lesion segmentation. The final 

prediction is obtained by adding output masks from stage 1 and stage 2 together.  

2.1  Data Preprocessing and Augmentation 

    We adopt 2D axial slices image extracted from 3D kidney CT scans as evaluation 

data, the preprocessing and data augmentation procedure consists of slices 

resampling, image scaling, cropping, and elastic transformation. All CT scans’ inten-

sity values are truncated to [-150, 250] to exclude irrelevant organs and tissues. We 

resample slices from each CT volume and save the images as local file. During train-

ing, random data augmentation was performed on the fly. 

    Resampling: Since only a small part of slices within a CT volume contains kidney 

and tumor, there will be significant data imbalance problem along with huge compu-

tational burden if extracting all the slices (~40754) for the model training. Alterna-

tively, for each kidney CT scan data, we extract all positive slices (slices contain the 

object content) while select the remaining negative slices (background slices) under a 

sampling interval of 5 (~23887).  

Scaling and cropping: Before fed into network for training, each image was re-

scaled with a random factor between 0.75 and 1.2,  cropping and padding operation 

was then accordingly used to adjusting the image to the required size of model input 

(i.e. 256 or 384).  

Elastic transformation: For further improving the robustness of the training pro-

cess, we adopt elastic transformation in our data augmentation. To create an image 
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deformation, displacement field was generated first and then convolved with a Gauss-

ian of standard deviation σ. We set the scale factor of the displacement field as 3, and 

σ =1 in this study.  

2.2  Network Architecture  

To learn patterns for capturing large object, output CNN features should corre-

spond to sufficiently large receptive fields. On the other hand, for capturing small 

sized objects, output features should correspond to sufficiently small receptive fields 

to localize small regions of interest precisely. Follow this spirit, we re-design the 

components of U-net to aggregate multi-scale contextual information and improve the 

features representational ability. 

Encoder path: In our model, the encoder path was organized in three consecutive-

ly stacked convolutional layers followed by alternatively layered basic encoder blocks 

and transition down blocks (down-sample layers). The first three convolutional layers 

are general convolution operation, while all other blocks using separable convolution. 

Each encoder block includes several densely connected parallel dilated convolutional 

(PDC) modules and a recalibration module. We set different dilation rate for different 

branch of PDC module, thus fruitful contextual information can be obtained by each 

encoder block. For further improvements, the recalibration module are used to re-

weighting the feature maps with the guidance of descriptors aggregated from spatial 

dimension and channel dimension of the feature maps. Since pooling operation will 

cause information loss, hence the down-sample layer was constructed with a batch 

normalization layer and a separable convolutional layer.  

In the task of kidney segmentation, all the strides of the down-sample layers were 

fixed as 2, the spatial resolution of the encoded feature maps is thus 16 times smaller 

than input image size.  For the purpose of capturing small lesion structures as possi-

ble, we set stride as 1 for the last down-sample layer of the model in the lesion seg-

mentation so as to maintain a relative large feature map size. 

Decoder path: The decoder path mainly used to recover spatial resolution of fea-

ture maps by gradually incorporating fine features from encode path. Same to encoder 

path, each decoder block also equipped with a recalibration model to enhance the 

feature ability.  The transition up blocks (up-sample layer) utilize transposed convolu-

tional layer to enlarge the feature maps size. 
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Table 1. Details of proposed network architecture. 

Modules Layers 

Input conv block 

3 × 3 conv, s = 1, p = 1, 18 

3 × 3 conv, s = 1, p = 1, 18 

3 × 3 conv, s = 1, p = 1, 36 

Encoder block 1 [
3 × 3 sep conv, d = (1, 3, 5), p = (1, 3, 5)

3 × 3 sep conv, s = 1, p = 1
] × 2, 84 

Transition down 1 3x3 sep conv, s=2, p=1, 84 

Encoder block 2 [
3 × 3 sep conv, d = (1, 3, 5), p = (1, 3, 5)

3 × 3 sep conv, s = 1, p = 1
] × 3, 156 

Transition down 2 3x3 sep conv, s=2, p=1, 156 

Encoder block 3 [
3 × 3 sep conv, d = (1, 3, 5), p = (1, 3, 5)

3 × 3 sep conv, s = 1, p = 1
] × 4, 252 

Transition down 3 3x3 sep conv, s=2, p=1, 252 

Encoder block 4 [
3 × 3 sep conv, d = (1, 3, 5), p = (1, 3, 5)

3 × 3 sep conv, s = 1, p = 1
] × 4, 348 

Transition down 4 3x3 sep conv, s=2, p=1, 384 

Encoder block 4 [
3 × 3 sep conv, d = (1, 3, 5), p = (1, 3, 5)

3 × 3 sep conv, s = 1, p = 1
] × 3, 420 

Transition up 1 3 × 3 transpose conv, s = 2, p = 1, 348 

Decoder block 1 [3 × 3 sep conv, s = 1, p = 1] × 2, 348 

Transition up 2 3 × 3 transpose conv, s = 2, p = 1, 252 

Decoder block 2 [3 × 3 sep conv, s = 1, p = 1] × 2, 252 

Transition up 3 3 × 3 transpose conv, s = 2, p = 1, 156 

Decoder block 3 [3 × 3 sep conv, s = 1, p = 1] × 2, 156 

Transition up 4 3 × 3 transpose conv, s = 2, p = 1, 84 

Decoder block 4 [3 × 3 sep conv, s = 1, p = 1] × 2, 84 

Output conv block 

3 × 3 conv, s = 1, p = 1, 84 

3 × 3 conv, s = 1, p = 1, 18 

3 × 3 conv, s = 1, p = 1, 1 

Sigmoid 
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2.3 Training Procedure 

We train our networks with a combination of dice and binary cross-entropy loss: 

 ℒ𝑡𝑜𝑡𝑎𝑙 =  𝛼ℒ𝐷𝑖𝑐𝑒 + 𝛽ℒ𝐵𝑐𝑒  (1) 

𝛼 fixed as 0.8 for both two training stage, and 𝛽 set as 0.4 and 0.04 for kidney and 

lesion segmentation respectively. 

Kidney segmentation: The aim of this step is to locate kidney region, and as 

aforementioned, kidney and tumor labels are merged as same category. We train the 

model from scratch using Adam optimizer with learning rate of 0.0003 and iterative 

epoch of 100.  

Lesion segmentation: Once the model was well trained in the first stage, we obtain 

the prediction masks of kidney from the output score maps with threshold of 0.4. 

Subsequently, each image is multiplied with the corresponding prediction kidney 

mask, as shown in Fig 2, irrelevant objects are thus excluded which reduce the diffi-

culty of the following lesion segmentation. In the second stage, we fine-tune the mod-

el from kidney segmentation using those masked images. The learning rate set as 

0.0001 and training epoch fixed as 80. 

After both models converged, final prediction masks of kidney and lesion was gen-

erated by summing score maps from the two models. The threshold fixed also as 0.4. 

In the submission phrase of the challenge, we take ensemble strategy since we have 

10 models totally for the five folds training.  

3 Experiment Results 

3.1 Dataset and Implementation setting 

    The proposed model was trained and evaluated on the kidney CT data from 2019 

Kidney Tumor Segmentation Challenge1. There are total 210 labeled CT scans re-

leased as training and validation data. Without using any external data, we perform 

five-fold cross validation using dice similar coefficient as measurement metric.  

    All the experiments are implemented based on python environment and Pytorch 

platform with a workstation of two Titan X GPUs. The source code can be found at 

http:// github.com.  

3.2 Results 

The evaluation results of kidney and lesion segmentation was shown in Table 2 

and Table 3 respectively. Due to some prediction masks or ground truth masks 

contain no kidney or lesion objects, in this case, the way of calculating the Dice 

can be different. In our study, when both prediction and ground truth are all zeroes 

                                                           
1  https://kits19.grand-challenge.org/home/ 

https://kits19.grand-challenge.org/home/
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values, we compute the Dice as 1. However, when ground truth contain no posi-

tive categories, and prediction is not empty, the Dice is regarded as 0. 

Table 1. Results on kidney segmentation. 

Fold numbers Dice coefficients Mean IoU 

Fold-1 96.18 94.22 

Fold-2 93.96 91.92 

Fold-3 93.86 91.92 

Fold-4 94.55 92.58 

Fold-5 94.47 92.44 

 

Table 2. Results on lesion segmentation. 

Fold numbers Dice coefficients Mean IoU 

Fold-1 85.50 83.60 

Fold-2 82.31 80.27 

Fold-3 84.64 82.46 

Fold-4 81.42 80.17 

Fold-5 80.85 78.63 
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