
ResCap: Residual Capsules Network for Medical Image

Segmentation

Chanh D.Tr. Nguyen1*, Huu-Hung Dao2 and Minh-Thanh Huynh1

1 FWI, FPT Software, Lot T2, D1 Street, Saigon Hi-Tech Park, Tan Phu Ward, District 9, Ho

Chi Minh City, Vietnam
2 MFG, FPT Japan, CROSS PLACE Hamamatsucho 6F, Shibakoen 1-7-6, Minatoku, Tokyo

105-001, Japan
*chanhndt1@fsoft.com.vn

Abstract. Convolutional neural networks (CNNs) have shown remarkable re-

sults for a wide range of task in computer vision. However, CNNs has the limi-

tation of poor translation invariance and lack of information about pose; thus, it

requires a lot of data. Capsule networks, however, have the ability to preserve

information about the pose. In this paper, we present a capsule-based network for

medical image segmentation. We adopt the contracting path of the U-Net archi-

tecture. The network achieves the same accuracy as U-Net but is much smaller

(0.16% number of parameters compared with U-Net).

Keywords: Capsule Network, U-Net, ResNet.

1 Dynamic routing capsule

Fig. 1. Equivalent perspective of capsule. (a) Group convolution layer follows by a routing

layer. (b) Convolution layer for each capsule type follows by a routing layer

2

In [1], S. Sabour et al. proposed a new network architecture called capsule that captures

part-whole relationships of objects in an image. The capsule calculation procedure con-

tains 2 main steps (as shown in Fig. 1): (i) Linear transformation: linear transform part

feature so that they can be combined together to form more abstract objects with the

combined feature. (ii) Routing Procedure: fine-tune connection between lower-level

capsule with a higher one, since not all part belongs to the same object, fine-tuning

connection helps assign which parts belong to which objects. We can treat these 2 steps

as a sub-network with 2 layers: Group Convolution, Routing Layer.

All the convolutional layer has no activation function

 𝑢 = 𝑊𝑥 (1)

For routing layer, all-paths get weighted summed after determining suitable coefficients

 𝑠 = ∑ 𝛼𝑖𝑢𝑖

𝑖

 (2)

All coefficients are calculated by routing procedure that iteratively refines them. The

initial coefficients are all equal, they’re then get refined by measuring how much each

capsule contributes to the final result i.e. the scalar product between 𝑠 and 𝑢𝑖.

2 Non-linear transformation in capsule

Fig. 2. Equivalent Non-linear transform capsule. (a) ResNext block follows by a routing layer.

(b) Equivalent ResNext block treated as many convolutional layers

The first layer of a capsule subnetwork can be understood as affine transformation of

instantiation parameters which work well for affine transformed data. However, real

3

world data transformation is non-linear e.g. transformation in medical image is non-

homogenous.

Inspired by [2], we replace the group convolution layer with a sub-network with 3 lay-

ers to make it a non-linear transformation as shown in Fig. 2:

 𝑢 = 𝑓(𝑥) (3)

For the final group convolution layer, we don’t use activation function as we want to

use capsule as a residual part of the network (see Section 3.) just like in [3]

3 Residual capsule block

Normal convolution layer is already a good pattern extractor, so we treat any additional

hierarchical instantiation feature as augmented information which helps strengthen the

effect of original convoluted feature. In [2], the information is aggregated by summa-

tion over each residual path. This summation can be treated as normal neural network

inner product with each weights equal unity (the so called “Network-in-Neuron”).

ℎ = 𝑥 + ∑ 𝑇𝑖(𝑥)

𝐶

𝑖=1

(4)

In order to reflect hierarchical relationship aggregation in image using (3), we add rout-

ing coefficient for each 𝑇𝑖(𝑥) and treat each of them as a part extractor i.e. a capsule

type

ℎ = 𝑥 + ∑ 𝛼𝑖𝑇𝑖(𝑥)

𝐶

𝑖=1

(5)

Each 𝛼𝑖 is routing coefficient expressing how much each component of 𝑇𝑖(𝑥) can in-

teract with each other to form an object. Here we treat each capsule as a convolutional

network with linear last layer, then we fine-tune the contribution of each capsule by

using Dynamic Routing procedure. Since we only have 1 output capsule, we modify

the routing algorithm as followed: (i) we change softmax to sigmoid as each capsule is

independent from one another. (ii) we don’t use squash function as that would diminish

the effect of residual sum by limiting the value in [−1, 1].

𝒑𝒓𝒐𝒄𝒆𝒅𝒖𝒓𝒆 𝑅𝑜𝑢𝑡𝑖𝑛𝑔(𝑇𝑖(𝑥), 𝑡)

 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑝𝑎𝑡ℎ 𝑖 𝑖𝑛 𝑡ℎ𝑒 𝑏𝑙𝑜𝑐𝑘: 𝛽𝑖 ← 0

𝒇𝒐𝒓 𝑡 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠 𝒅𝒐

𝑓𝑜𝑟 𝑎𝑙𝑙 𝑝𝑎𝑡ℎ 𝑖 𝑖𝑛 𝑡ℎ𝑒 𝑏𝑙𝑜𝑐𝑘: 𝛼𝑖 = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝛽𝑖)

𝑠𝑢𝑚 𝑜𝑣𝑒𝑟 𝑎𝑙𝑙 𝑝𝑎𝑡ℎ: 𝑣 = ∑ 𝛼𝑖𝑇𝑖(𝑥)𝐶
𝑖=1

 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑝𝑎𝑡ℎ 𝑖 𝑖𝑛 𝑡ℎ𝑒 𝑏𝑙𝑜𝑐𝑘: 𝛽𝑖 ← 𝛽𝑖 + ⟨𝑣, 𝑇𝑖(𝑥)⟩
 𝒓𝒆𝒕𝒖𝒓𝒏 𝑣

4

4 Implementation details

We adopt the flexible design of ResNets [3] and U-Net [4]. Our network consists mainly

of 2 block: Up and Down Block (Fig. 3). We use the settings of 32 x 4d just as in [2]

and starting layer has 32 filters. We use template 32x4x32 to express the network con-

figuration.

Fig. 3. Our ResCap model for kits19 challenge

We start the model with a standard convolution block with convolution layer followed

by normalization layer and non-linear activation layer (Fig. 4)

Fig. 4. Conv Block, standard convolution block with normalization and non-linear activation

Fig. 5. Down Block, max-pooling layer concatenated with capsule block to pick out most

prominent feature, followed by a refinement convolution layer with additional hierarchical infor-

mation with capsule block

The Down block (Fig. 5) follows 3 simple rules: (i) any convolution/pooling layer must

be accompanied by a capsule block (Figure 2), (ii) for pooling layer, capsule should be

combined with it in a concatenative manner, and (iii) for convolution layer, capsule

block should be combined with it in an additive manner.

5

For the Up block (Figure 6), we add one more rule: any transpose convolution layer

must be combined with encoder’s same resolution layer in a concatenative manner

Fig. 6. Up Block, concatenate transpose convolution with shortcut connection from same res-

olution

Summation vs concatenation skip connection: for path that contains pooling opera-

tion or combination of transpose convolution and same resolution layer, we found it is

empirically better to use concatenation. Concatenation is better than addition in our

model, however, in order to stop the exponentially growth of number of parameters and

GPU memory consumption, we settle for addition at same resolution layer and concat-

enation for changing resolution.

Normalization Layer: since the data consists of high resolution image (512 x 512), we

use Group Normalization [4] instead of Batch Normalization [5] as we can only fit a

small batch size on GPU. We found experimentally that adding a normalization layer

after routing layer improved the model’s performance. For big computation resource,

Batch Normalization outperforms Group Normalization.

Routing vs pooling: In [1], the authors wanted to replace pooling layer with routing

layer as they argued that pooling threw away local information like position and re-

tained only the most active feature. We, however, think that the 2 need not be exclusive,

as such, we include both max-pooling layer and routing layer in our network (Fig. 6).

The intuition behind this is that while max-pooling does throw away much information,

by using capsule as residual we can still retain the necessary information for higher

layer to use. We found that for pooling and routing, concatenation works better than

addition, we hypothesize this as capsule instantiation feature being overwhelmed by

strongest feature picked out by max-pooling.

Softmax convolution vs capsule final layer: In segmentation task, there’re a lot of

empty background, and instantiation parameters are not well-defined for empty back-

ground, so using pure capsule output with additional instantiation feature doesn’t make

a lot of sense. By using softmax output, we side-step the issue of not well-defined in-

stantiation feature and only focus on whether the foreground is there or not. Further-

more, each capsule output is independent of each other, but for segmentation task that

has no overlapping object, we lose that information using capsule final layer.

5 Experiment

The goal of the dataset is to segment kidney and kidney tumor in CT scans of 300

unique kidney cancer patients. We train on 210 cases and test on the remaining 90 cases.

6

For this dataset, each case is a 3D CT scan of a patient, so by using normal 2D convo-

lution we will lose 3D structure correlation. As such, we opted for 3D convolution on

this dataset.

For each case in kits19 dataset, the scan resolutions aren’t the same, so we standardize

them all to 512x512 resolution by padding and cropping. After that, in order to fit the

data on GPU without losing too much image information, we down sample the data to

256x256 using Bicubic Interpolation and extract a patch size of 8 along the z dimension.

However, using only 8 frames along the z axis also resulted in much information loss

and most of the tumor and kidney appear in the middle or near the end for each case, as

such we add a normalized z coordinate as a channel for each of the slice.

Since the number of tumor and kidney slices is smaller than the ones without, we up-

sample them so that each batch has equal number of empty, tumor and kidney volume.

Furthermore, since kidney is symmetrical with respect to the y axis, we augment the

data with random horizontal flipping. After that, each volume is normalized to have

zero mean and unit variance.

For loss function, we use Focal Loss [7] as it will automatically reduce learning signal

of easy sample, so it’ll act as a dynamic weighting scheme that helps improve our up-

sampling strategy.

ℒ =

1

𝑛
∑ −(1 − 𝑝𝑖)𝛾𝐿𝑜𝑔(𝑝𝑖)

𝑛

𝑖=1

(6)

 𝜕ℒ

𝜕𝑝𝑖

=
1

𝑛

(1 − 𝑝𝑖)𝛾−1

𝑝𝑖

(𝑝𝑖 − 1 + 𝛾𝑝𝑖𝐿𝑜𝑔(𝑝𝑖))
(7)

As we can see from Equ (7), the gradient magnitude reaches 0 as 𝑝𝑖 approach 1 hence

effectively reduce learning signal of easy sample. We found out experimentally that

𝛾 = 1 gives the best result.

Another dynamic weighted loss we tried was dice loss

ℒ =

∑ 𝑝𝑖𝑡𝑖𝑖

∑ 𝑝𝑖
2 + 𝑡𝑖

2
𝑖

(8)

 𝜕ℒ

𝜕𝑝𝑖

=
𝑡𝑖 ∑ (𝑝𝑗

2 + 𝑡𝑗
2)𝑗 − 2𝑝𝑖 ∑ 𝑝𝑗𝑡𝑗𝑗

∑ (𝑝𝑗
2 + 𝑡𝑗

2)𝑗
2

(9)

As 𝑝𝑖 goes to 1, it depends on how much other pixel reaches their target, so if other

hard sample pixels still haven’t reached their targets, easy samples pixel may still have

large learning signal which results in not as effective weighting scheme as Equ (7).

For the final model, we train an ensemble of a network without z coordinate, a network

with z coordinate with same number of parameter, and a network with z coordinate with

double filter at each step. The results are showed in Table 1.

7

Table 1 . Volumetric dice score for patch and case, 32x4x32 stands for 32 capsule path, 4

starting embedding, and start filter is 32, 32x4x64 stands for 32 capsule path, 4 starting embed-

ding, and start filter is 64

Architecture Patch dice

score

Rescaps (32x4x32) 82.09%

Rescaps (32x4x32) + z coordinate 82.98%

Rescaps (32x4x64) + z coordinate 83.49%

Ensemble 3 models 83.82%

Fig. 7. Train and validation dice score curve

References

1. Sabour, S., Frosst, N., Hinton, G.E.: Dynamic Routing Between Capsules. (2017).

2. Xie, S., Girshick, R., Dollár, P., Tu, Z., He, K.: ResNeXt 2016 ImageNet 2nd:

Aggregated residual transformations for deep neural networks. Proc. - 30th IEEE Conf.

Comput. Vis. Pattern Recognition, CVPR 2017. (2017).

3. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In:

Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern

Recognition (2016).

4. Wu, Y., He, K.: Group Normalization. Int. J. Comput. Vis. (2019).

5. Ioffe, S., Szegedy, C.: Batch Normalization: Accelerating Deep Network Training by

Reducing Internal Covariate Shift. (2015).

