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INTRODUCTION 

Kidney cancer is the 6th most common cancer in men and 10th in women worldwide, 

with an estimated 140,000 kidney cancer deaths annually.[1] Small kidney tumors comprise 

approximately half of all diagnosed renal masses due to increased incidental detection by 

diagnostic imaging.[2-4] Radiographic imaging not only establishes the diagnosis of a 

kidney tumor, but imaging features are the primary determinant of clinical management.[5] 

Indeed, imaging features as reflected in nephrometry scoring systems have been correlated 

with probability of malignant pathology, tumor grade, and technical complexity of nephron 

sparing surgery.[6-9] 

However, the manual extraction of imaging features is time-consuming and subject 

to heterogeneity across different nephrometry scoring systems. The introduction of deep 

learning algorithms for classification of radiographic images represents a potential method 

to automate the analysis of renal tumor imaging.[10-13] One of the initial tasks in the 

analysis of cross-sectional kidney imaging is the accurate segmentation of kidney 

parenchyma from tumor and background tissues. The Kidney Tumor Segmentation 

(KiTS19) Challenge was organized to provide a forum for the development of such 

segmentation algorithms.[14] Herein, we developed an algorithm using the KiTS19 

Challenge dataset to segment kidney parenchyma, tumor, and background. 

  



METHODS 

Dataset and Outcomes 

The KiTS19 Challenge comprised a dataset of 300 patients who underwent partial or 

radical nephrectomy at the University of Minnesota from 2010 to 2018[14], provided under 

the Creative Commons CC-BY-NC-SA license. The dataset consisted of abdominal 

computed tomography (CT) scans acquired in the arterial-phase with segmentation masks 

for 3 classifications: background, kidney parenchyma, and kidney tumor. The dataset was 

split into a training set of 210 randomly selected cases that were made available on March 

15, 2019, and a test set of 90 cases that were made available on July 29, 2019. Images were 

manually segmented and ground truth pixel-level labels were provided for the training set 

for background, kidney parenchyma, and kidney tumor. Participants were required to 

develop an algorithm for pixel-level segmentation of these images and to submit 

classifications for the test images.  

 

Deep Learning Algorithm 

We developed a deep learning algorithm using convolutional neural networks (CNN) 

as described below to produce pixel-level classifications of background, kidney 

parenchyma, and kidney tumor. We trained the CNN using the 210 training cases and 

produced pixel-level classifications for the 90 test cases. 

 

Network Architecture 

In standard neural network architectures, both high- and low-level features are 

retained by using skip-connections between layers resulting in a more precise prediction. 

Resnets sum the result of the identity function on skip connections,[15] whereas DenseNets 



concatenate these outputs while forwarding connections from all preceding layers rather 

than just a previous layer leading to a significantly improved flow of information.[16] 

We developed our network architecture based on a deep 3D FC-DenseNet.[17] This 

DenseNet style architecture is shown in Figure 1.[16] The model is trained on local features 

in a contracting path concatenated with global features in an expanding path. Therefore, the 

network can learn high-resolution as well as low-resolution local and global features in 3 

dimensions. The depth of the model ensures the use of 5 different 3D image feature 

resolutions in the final prediction. 

An initial 2x2x2 convolutional layer with stride of 2 was used to down-sample and 

reduce the patch size to 64x64x64 while preserving the larger field of view of 128x128x128 

followed by three padded 3x3x3 convolutional layers and five dense blocks with a growth 

rate of 12. Dimension reduction of 0.5 was applied after transition layers to help reduce the 

number of input feature maps and improve parameter efficiency. There were skip 

connections between every layer inside the dense blocks. Batch normalization and ReLU 

layers were applied after all convolutional layers. Dropout rate of 0.2 was used after 3x3x3 

convolutional layers in each dense block. Finally, a 1x1x1 convolution with a sigmoid 

function was used as the final layer. A focal loss function, which is a generalization of the 

cross entropy function, was used as the cost function to the network.[18] 

 

Training and Testing Strategies 

Two separate models were trained with the dataset from KiTS19 challenge. The first 

network was trained for the purpose of predicting kidney and tumor masks combined and 

another network exclusively to predict the tumor. The output of the first model was used as 

a posterior probability map inspired by an auto-context technique and was applied as an 

extra channel input to the second model to help with focusing the learning features.[19]  



To address the problem of effective receptive field and lower accuracy around patch 

borders, a patch prediction fusion strategy was used as a post-processing step using a 

second-order spline weighting function placed at the center of each patch.[17] Furthermore, 

a soft voting approach was used to fuse the weighted probabilities into a single 3D map. An 

overlap of 50% was used between each 3D patch, therefore each voxel was predicted based 

on a vote between 32 predictions with augmentations (180-degree rotations in each 

dimension). 

 

  



RESULTS 

 The 3D FC-DenseNet architecture was trained on 210 training cases as described 

above. The model was then applied to 90 test cases. Representative segmentation maps for 

select image slices are illustrated in Figure 2. 

 

  



DISCUSSION 

 Using the KiTS19 Challenge dataset,[14] we developed a deep learning algorithm 

for the automated segmentation of cross-sectional kidney imaging. The algorithm 

demonstrated excellent performance in a held-out set of 90 test cases, similar to that of 

manual segmentation. The application of automated segmentation for kidney tumor imaging 

has several potential advantages. First, it allows one to massively scale the process of kidney 

segmentation in cross-sectional imaging compared to manual segmentation, which is 

precursor to any analysis that requires segmented tumor volumes.[11, 20-23] Perhaps more 

importantly, it can serve as an important infrastructural component for methods that aim to 

predict clinical attributes, such as pathologic features, from cross-sectional imaging.[10] 

The present results represent foundational work for the more ambitious goal of developing 

deep learning methods to enhance clinical diagnosis from radiologic images. 

  



CONCLUSIONS 

We developed a deep learning algorithm for the automated segmentation of cross-

sectional kidney imaging that demonstrated excellent performance and may represent a 

method to replace manual segmentation of images.  



Figure 1: The 3D FC-DenseNet architecture using auto-context kidney feature maps as an 

extra input channel to predict tumor masks. 

 

 

 

 

  



Figure 2: Representative image slices of automated segmentation in select held-out test 

cases.  
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