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Abstract. Kidney tumor is typically diagnosed using computed tomography (CT) 

imaging by investigating geometric features of kidney tumor. For a reliable diag-

nosis and treatment planning, kidney tumor quantification is necessary. However, 

manual segmentation by human requires time and expertise. In addition, inter/in-

tra variability of segmentation results can lead to suboptimal decision. In this 

study, we propose the two-stage segmentation method using 2.5D and 3D con-

volutional neural network for kidney and kidney tumor delineation. The two-

stage model was trained with multi-task loss for pixel-wise cross-entropy loss 

function for segmentation task and mean square error function for regression 

task. Experimental results confirm that the proposed method effectively segments 

kidney and kidney tumor.  
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1 Introduction 

Kidney cancer is the seventh most common cancer with a high mortality rate with 

175,000 in 2018 [1]. Computed tomography (CT) image is typically used for diagnos-

ing kidney cancer and planning treatment. Specifically, morphological characteristics 

of a kidney tumor are important criteria, and quantification of geometric features of 

tumor is a prerequisite for a concrete decision. However, manual delineation by human 

requires a lot of time and effort. Even in manual segmentation of a kidney tumor, in-

tra/inter-variability can arise. To overcome limitations of manual delineation, automatic 

segmentation of kidney and kidney tumor is often necessary. Automatic segmentation 

can save time and effort while segmentation results standardized by the model can be 

acquired.  

Conventionally, hand-crafted features and prior knowledge are required to make auto-

matic segmentation models. However, feature engineering requires expertise and expe-

rience. Recently, Convolution Neural Network (CNN) methods have been extensively 
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studied as the solutions to traditional approaches, as a CNN is a data-driven method 

and shows promising results without requiring hand-crafted features.  

In this study, we propose the CNN-based two-stage segmentation method for kidney 

and kidney tumor. We separately design kidney segmentation model and tumor seg-

mentation model to dissect and simplify problems, resulting in an efficient segmenta-

tion scheme. To exploit multiple slice information of tumor, we construct 2.5D CNN 

for kidney segmentation, and 3D CNN for tumor segmentation. Based on dice coeffi-

cient of segmentation results, we found that the proposed method effectively segments 

kidney and kidney tumor. 

2 Methods 

We use a two-stage approach for kidney and kidney tumor segmentation. The first net-

work is used to segment kidney images from CT abdominal scans, and the second is 

used to segment kidney cancer images from the segmented kidney map so that the net-

work recognizes the cancer image only from the kidney image. Code would be released 

at https://github.com/cms4f/kits19 

 

 

2.1 Kidney segmentation 

2D-based segmentation models do not use multi-slice information that is useful for seg-

menting 3D objects. For efficient segmentation by exploiting multiple slice infor-

mation, three adjacent slices are stacked as input of the network, and the model is 

trained to generate a segmentation map corresponding to the center slice of the input. 

We call this approach 2.5D network. We construct the 2.5D network based on U-Net 

with attention gates [2]. Attention gate is known to recognize significant features while 

suppressing unrelated features for a task.  

We conduct this process in three directions; axial, coronal, and sagittal. In axial direc-

tion, we construct the 2.5D network based on improved version of U-Net [3]. The im-

proved U-Net consists of lossless decomposition which satisfy the frame condition in 

which low and high frequency components of image can be retained [4]. In coronal 

direction and sagittal direction, we use Max-pooling U-Net. Then the results are com-

bined as union.  In this way, we can capture kidney more accurately.  

 

2.2 Tumor segmentation 

In tumor segmentation, the model is a 3D network based on max pooling U-Net with 

attention gates [5]. The images masked by kidney segmentation predictions are used as 

input of network. At the end of the U-net, we added two headers for tumor segmentation 

and regression. By adding one additional regression task to the existing segmentation 

model, we could get more regularized and enhanced results in tumor segmentation.  

 

https://github.com/cms4f/kits19
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3 Experiments and results 

3.1 Datasets 

Our method was trained and evaluated on KiTS19 challenge dataset consisting of CT 

images from 300 subjects [6]. 210 of these subjects have been released publicly as 

training set. 90 of 300 subjects are used as test set. The CT images are 3 dimensions, 

which consist of 512 x 512 x N (N: slice). The label index of segmentation masks is 1 

for kidney, 2 for kidney tumor, and 0 except for kidney and tumor. The test set for 

challenge was released on July 15, 2019. So, we randomly divided training, validation 

and test set from publicly released training set for developing algorithm. To get rid of 

the unnecessary information on kidney and tumor segmentation, we clip the data to the 

range [-1024 to 2125]. 

 

3.2 Kidney segmentation 

We divide full image with size of 512 x 512 to half-sized image with size of 512 x 256 

to learn different characteristics of left and right kidney in training and test phase. Final 

segmentation map is combined with two half-sized maps. We simplify multi-class clas-

sification to binary classification problem for kidney segmentation. We set the back-

ground index to 0 and otherwise to 1, which means that the network recognizes kidney 

and kidney tumor as one class.  

To train the network, we set the loss function which aims to learn multi-task. We use 

pixel-wise cross-entropy loss function for segmentation task and mean square error 

function for autoencoding reconstruction task. We found that exploiting multi-task 

learning improves the performance of algorithm while preserving fine details of objects. 

We used ADAM optimizer to optimize parameters of the network for kidney segmen-

tation. The implementation of our algorithm was based Pytorch and Tensorflow library. 

 

3.3 Tumor segmentation 

We made a cube which covers whole volume of kidney segmentation and resize the 

cube into 4 sub-blocks due to memory restriction. We train and inference a network 

using left and right kidney separately. We use the weighted sum of pixel-wise cross 

entropy loss function for segmentation task and L1 loss function for regressions task.  

Also, we weight on loss of small tumor label. The implementation of our algorithm was 

based Tensorflow library. 

 

3.4 Evaluation 

We use dice coefficient as quantitative criterion for image prediction quality. We ran-

domly select 27 validation data set and use it as our criterion for evaluation. As shown 

in Table 1, the proposed method makes performance with a dice score of 95.22% and 

63.12% for kidney and tumor respectively. Figure 1 shows results of kidney and tumor 

segmentation. As seen in the figure, the model achieves good performance. 

 



Table 1: Kidney and kidney tumor segmentation performance on validation 27 cases 

 Kidney Dice Kidney tumor Dice 

Our model 0.9610 0.7080 

 
Figure 1: Segmentation results of the validation dataset: grey is kidney and white is tumor 

4 Discussion and conclusion 

We develop automatic kidney and tumor segmentation method using convolutional 

neural networks. In the case of kidney segmentation, training with input images of three 

different axis can capture different features of kidney, thus, combining them improves 

segmentation performance. Furthermore, adding another task to the segmentation 

model makes each task regularized and more accurate. In the case of tumor segmenta-

tion, 3D model performs well because it can learn and use depth information of kidney 

and tumor. 
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