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Abstract. Each year, there are about 400’000 new cases of kidney cancer 

worldwide causing around 175’000 deaths. For clinical decision making it is 

important to understand the morphometry of the tumor, which involves the time-

consuming task of delineating tumor and kidney in 3D CT images. Automatic 

segmentation could be an important tool for clinicians and researchers to also 

study the correlations between tumor morphometry and clinical outcomes. We 

present a segmentation method which combines the popular U-Net convolutional 

neural network architecture with post-processing based on statistical constraints 

of the available training data. The full implementation, based on PyTorch, and 

the trained weights can be found on GitHub http://github.com/ipa/kits2019. 

 

 

1 Introduction 

Each year, there are about 400’000 new cases of kidney cancer worldwide causing 

around 175’000 deaths. Historically, radical nephrectomy which involves removal of 

the tumor and the kidney was considered gold standard for curative care. Recently, 

nephron sparing resection (partial nephrectomy) approaches are becoming more 

popular, as they result in better quality of life for the patient [1].  

 There are several scoring systems, which have a high predictive power towards 

surgical and clinical outcomes, even though they use rather simple characteristics of 

the tumor and the kidney derived from imaging. Therefore, it is assumed that more 

complex features have an even higher predictive power. Furthermore, automating the 

extraction of these features would be a clinically useful instrument for oncologists to 

decide on an appropriate surgical approach. 

Recently, and especially since larger datasets are available, convolutional neural 

networks (CNN) have become the method of choice for image processing problems 

such as semantic segmentation. In this work, we present and evaluate a segmentation 

method based on the U-Net architecture, which is a CNN specifically designed for 

biomedical image segmentation. 

http://github.com/ipa/kits2019


2 Material and Methods 

For this segmentation task, a two stage approach consisting of a segmentation step 

based on a U-Net and a post-processing step consisting of filtering and 

anatomical/statistical constraints is proposed Fig 1. 

 

Fig 1: Concept of the whole image-processing pipeline 

For training the dataset form the KiTS19 challenge was used [2]. This dataset is 

composed of 210 CT images of patients with kidney tumors with the corresponding 

segmentation masks for the kidney and the tumors. For efficient data loading, the slices 

of the CT images and the corresponding segmentation masks were extracted and stored 

separately as 2D images. The training data was randomly split into a training set (90%) 

and a test set (10%) on a case basis. 

2.1 U-Net 

The U-Net is a fully convolutional neural network (Fig 2), which was specifically 

designed for biomedical image-segmentation tasks [3]. In this work, we use this model 

for the initial segmentation of the kidneys and tumors. However, we applied some 

changes which are described in the following sections. 

 

Fig 2: The original U-Net architecture consisting of an encoder and a decoder part 

with skip connections was used for this project [3] 
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Firstly, we used a single channel output with a sigmoid activation in the last layer, 

compared to a two-channel output with a soft-max activation. While this model is 

adaptable to multi-class problems, we trained two separate models – one for kidney + 

tumor and one for tumors only.  

2.1.1 Training 

In contrast to the original implementation we didn’t use weights for the loss function 

but used a slightly adjusted loss function. The loss function (equation 1) is composed 

of a combination of the binary cross entropy (BCE) and the DICE loss function [4] with 

a weighting factor λ for the DICE and 1- λ for the BCE: 

 

      𝒍𝒐𝒔𝒔 = (𝟏 − 𝝀) ∗ 𝑩𝑪𝑬(𝒑𝒓𝒆𝒅, 𝒕𝒂𝒓𝒈𝒆𝒕) +  𝝀 ∗ 𝑫𝑰𝑪𝑬(𝒑𝒓𝒆𝒅, 𝒕𝒂𝒓𝒈𝒆𝒕)     

(1) 

 

In this work, λ was set to 0.5 to give both components of the loss function equal 

weight. We used this loss function with the Adam optimizer [5] and a learning rate 

scheduler, which adapts the learning rate based on the progress of the loss function. The 

model was trained from scratch and weights were initialized with random number from 

a gaussian distribution and the bias terms were set to 0. Both models were trained for 

50 epochs, but both converged between 40 – 45 epochs and early stopped. 

Firstly, we trained a 2D U-Net on the axial slices with input size 256 x 256, where 

the images were resized using nearest neighbor interpolation. The model was trained 

only on positive samples, where either kidney or tumor are visible. Additionally, the 

tumor labels were converted into kidney labels. Therefore, the model was trained to 

segment kidney + tumor.  

Secondly, we trained another 2D U-Net on the lower half of the axial slices with 

input size 128 x 256, where the images were resized using nearest neighbor 

interpolation. The model was trained on positive tumor samples, where the tumor is 

visible. In contrast to the kidney model, the kidney labels where set to background and 

the tumor labels to foreground. Therefore, the model was trained to specifically 

segment the tumor. 

Training on positive samples only causes the network to produce random output on 

negative samples at inference time. In some cases, even with a very strong activation 

in the last layer, causing false positives. However, we found that these can easily be 

filtered in a post-processing step. 

During inference, each slice is passed through both models, and the results are then 

merged into a volume of the same size as the input volume, before passing the result to 

post-processing. 



2.2 Post-processing 

During the post-processing phase, holes in the segmentation are filled using 

morphological operators and false positive from the U-Net prediction are removed. 

After that, the two segmentation masks are merged into one volume. 

For the kidney labels, a connected components labelling is applied to identify the 

two largest structures in the volume. With this simple anatomical constraint, we can 

eliminate the false positives that were caused by random activations on negative slices. 

For the tumor labels, a statistical approach is used to remove segmentations, that do 

not fall in the shape distribution of kidney tumors. This statistical model is based on the 

ratio between the two largest eigenvalues of the tumor voxels. This ratio was first 

computed on all tumors available in the segmentations. The range of acceptable ratios 

was computed as the range between the 5th and 95th percentile of the ratio distribution. 

Specifically, this range was found to be between 1.07 and 2.8. Furthermore, a constraint 

that the tumor labels need to overlap with the kidney labels was applied. This is 

possible, because the first model segments kidney+tumor voxels. We chose a threshold 

of 95% overlap of the tumor with the kidney+tumor label, to accommodate for cases 

where the tumor segmentations are more accurate from the tumor model. 

3 Experiments and Results  

For evaluation of the segmentation method, the kidney and tumor DICE score of the 

segmentation on the test set were computed. In contrast to the training phase, where 

only positive samples were used, the whole CT volume was used and segmented. The 

test set consisted of 20 out of 210 datasets.  

On this test set, the U-Net segmentation achieved a median DICE score of 0.91 and 

0.49 for kidney+tumor and tumor respectively. After post-processing the mean DICE 

score was 0.97 and 0.61 for kidney+tumor and tumor respectively Fig 3.  

 

   

Fig 3: Results of the kidney + tumor segmentation (left) and the tumor 

segmentation (right) before (blue) and after post-processing (red) 

The segmentation artifacts and the results after post-processing can be clearly seen 

in Fig 4. The post-processing step successfully removes false positives from the 

segmentation results of the kidney in almost all cases. However, it does remove some 



true positives from the tumor labels, even causing that in some cases all tumor 

detections are filtered out. 

 

  

Fig 4: 3D segmentation result before (left) and after filtering of segmentation 

artifacts from random activations (right) 

4 Conclusion 

In this work, we presented how a simple CNN network followed by a post-processing 

step which purely applies anatomical constraints, can achieving competitive results. 

However, the algorithm failed in some cases of abnormal anatomy or with very large 

tumors. However, this is a small fraction of all cases which would require a radiologist’ 

input when used in clinics. 
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