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Abstract. Automatic segmentation of hepatic lesions in computed to-
mography (CT) images is a challenging task to perform due to hetero-
geneous, diffusive shape of tumors and complex background. To address
the problem more and more researchers rely on assistance of deep con-
volutional neural networks (CNN) with 2D or 3D type architecture that
have proven to be effective in a wide range of computer vision tasks,
including medical image processing. In this technical report, we carry
out research focused on more careful approach to the process of learning
rather than on complex architecture of the CNN. We have chosen MIC-
CAI 2017 LiTS dataset for training process and the public 3DIRCADb
dataset for validation of our method. The proposed algorithm reached
DICE score 78.8% on the 3DIRCADb dataset. The described method
was then applied to the 2019 Kidney Tumor Segmentation (KiTS-2019)
challenge, where our single submission achieved 96.38% for kidney and
67.38% for tumor Dice scores.
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1 Introduction

Hepatic tumor may cause a serious threat to human health and lives. To prevent
and monitor liver diseases it is important to provide accurate segmentation of
abnormal tissues in the organ. Although liver segmenting task has achieved good
results thanks to CNN, localization of liver tumors is still a demanding problem
and has some room for improvement.

CT is generally used image modality by radiologists and oncologists for liver
tumor evaluation, but sometimes CT scans have noise in them due to reduction
of the CT radiation dose, which is always a trade-off between image quality and
health risks for patients. Other main issues in the segmentation task are the large
scale of spatial and structural variability, low contrast between liver and tumor
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tissues, high variation in size, shape and number of lesions, even the similarity
of nearby organs.

To date, segmentation of biomedical and medical images is an active research
area. In this work we adopted the delineation between methods based on how
autonomous they were actually detecting liver and/or liver tumor. According to
this, algorithms for segmentation fall into groups of semi-automatic and fully-
automatic techniques. The methods for segmentation of CT images are reviewed
next.

1.1 Related semi-automatic methods

The related studies based on semi-automatic methods are reviewed here. In all
semi-automatic methods, a qualified radiologist must first locate liver and/or
liver tumors manually by selecting a bounding box or other area selection.

In early attempts to perform segmentation might be used such technique as
graph cut [1], when computer vision approach could not operate very deep and
extensive networks, so it highly relied on complex mathematical base.

In 2005, Liu et al. [2] developed a method for segmentation of the liver
contour, where a Canny edge detector was used together with a snake algorithm
and a gradient vector flow (GVF) field as its external force. The method achieved
a median 5.3% error by segmentation volume on 551 2D liver 512× 512 images.
This category of methods based on the local pixel intensity and/or gradients
were actively explored [19] and demonstrated reasonable results in liver tumor
segmentation even in low contrast CT images.

Siriapisith et al. have proposed a 2D segmentation method [3] that applies the
concept of variable neighborhood search by iteratively alternating search through
intensity and gradient spaces. They have claimed to achieve the segmentation
performance with a DSC of 84.48± 5.84% and 76.93± 8.24% for large and small
liver tumor respectively.

A texture-specific BoVW method [4] for the retrieval of focal liver lesions
has been introduced by Xu et al. The bag of visual words (BoVW) model is
meant for feature representation that can integrate various handcrafted features
like intensity, texture, and spatial information and thus is able to effectively
characterize various liver tumors.

Zheng et al. [5] have presented the method which combines hybrid algorithms
such as a unified level set method (LSM) coupled with hidden Markov random
field and expectation-maximization (HMRF-EM). The proposed LSM approach
incorporates both region information and edge information to evolve the contour
and it is more resistant to edge leakage than the single-information driven LSMs.

Interaction is required for the mentioned above liver and liver tumor segmen-
tation methods, that fact restricts using those frameworks with well-qualified
specialists.
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1.2 Related fully-automatic methods

The major recent breakthrough in the field of semantic segmentation is widely
attributed to the general-domain fully convolutional neural networks (FCNs)
of [6], [7] and biomedical-domain U-net of [8]. The term semantic means that
each pixel is assigned a label or a class of objects during training and prediction
phases. For example, in this context, each image pixel could be assigned one of
three labels: liver, tumor, other. Therefore the semantic segmentation could be
conveniently defined as a per-pixel classification problem.

Since the CNN methods have been developing at accelerating rate, it is re-
vealing to note their publication years.

In 2015, for liver tumor segmentation, Li et al. [9] achieved the Dice similarity
coefficient [10] (DICE, see Eq. 3) of 80% and the area under the Precision-Recall
curve of 0.9556, where the results were the averages of 30 leave-one-out cross
validations on 30 CT images. Most notably it was clearly demonstrated that
their CNNs outperformed other traditional machine learning methods such as
AdaBoost, random forest (RF), and support vector machine (SVM). Gaussian
smoothing filter was used as prepossessing, and the images were downsized by
a factor of 2. Four different CNN architectures (with 6 or 7 layers) were tested,
where their input shapes ranged between 13 × 13 and 19 × 19 grayscale image
patches.

The CNN approach in [9] did not follow the currently most widely used seg-
mentation CNN architectures [6], [7], [8]. The fully convolutional neural networks
(FCNs): in VGG-FCN [6] and U-Net[8] CNNs, there are two distinct sections:
encoder and decoder. Encoder layers or even a complete classification CNN (for
example, VGG16 [11] in [6]) downsize the input image by up to 32 times while
the image features are extracted. Then the decoder layers reconstruct the orig-
inal input shape with the required number of segmentation layers or channels.
In [9], only the encoder-type CNN was used by centering it at each input pixel.

In 2016, Dou et al. [12] developed a 3D version of the VGG-FCN [6] archi-
tecture with deep supervision to hidden layers, so-called 3D deeply supervised
network (3D DSN), which could accelerate the optimization convergence rate
and improve the prediction accuracy. Additionally, 3D DSN generated the high-
quality score map that helped to make contour refinement with a fully connected
conditional random field (CRF) to obtain refined segmentation results.

Lu et al. [13] proposed method for liver segmentation consisted of two steps:
first, using 3D CNNs to detect liver and make probabilistic segmentation, and
second, to refine accuracy of initial segmentation with graph cut and the previ-
ously learned probability map. The suggested approach was validated on 3DIRCADb
dataset and reached 9.36% and 0.97% for volume overlap error (VOE, see Eq. 2)
and relative volume difference (RVD, see Eq. 2) respectively.

In 2017, Christ et al. [14] trained two cascaded UNet-type [8] FCNs. The
first FCN segmented a liver out of the rest of the inner body tissues. Then the
second FCN segmented lesions from the output ROIs (regions-of-interest) of the
first FCN. Dense 3D CRF was used as the post-processing to refine the FCN
predictions. DICE over 94% was achieved on the 15 hepatic tumor volumes from
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the abdominal CT dataset 3DIRCADb [15] for liver segmentation and 56% for
lesions.

Sun et al. [16] used a segmentation CNN conceptually similar to the FCN
architecture of [6], where the AlexNet [17] CNN was used as the encoder. On
the 3DIRCADb dataset, Sun et al. reported the VOE of 15.6 ± 4.3%. In ad-
dition to the publicly available 3DIRCADb dataset, the private JDRD dataset
was labeled by two radiologists at The First Hospital of Jilin University. The
unique feature of the JDRD dataset was its three CECT (contrast-enhanced
computed tomography) per-slice images taken at three blood flow phases: ar-
terial (ART), portal venous (PV), and delayed (DL) phase at the same lesion
locations. When all three grayscale phase-specific images where combined into
three-channel images, the studied multi-channel segmentation CNN (MC-FCN)
improved VOE = 8.1 ± 4.5%.

In 2018, Li et al. [18] developed a hybrid densely connected UNet (H-DenseUNet),
which consists of a 2D DenseUNet and a 3D counterpart. H-DenseUNet worked
in an end-to-end manner, where the intra-slice representations and inter-slice fea-
tures can be jointly optimized through a hybrid feature fusion (HFF) layer for ac-
curate liver and lesion segmentation. H-DenseUNet was trained on MICCAI 2017
Liver Tumor Segmentation (LiTS) dataset [20] and validated on the 3DIRCADb
dataset achieving the liver DICE = 98.2% and tumor DICE = 93.7%. Worth
noting that they also conducted experiments exclusively on 3DIRCADb dataset
through cross-validation and achieved the liver segmentation DICE = 94.7% and
tumor DICE = 65%.

Some recent papers have been dedicated to attention mechanism, like [21]
and [22].

In 2018, Jin et al. [21] used a 3D hybrid residual attention-aware segmentation
method, called RA-UNet, in their experiments. Attention modules were stacked
so that the attention-aware features could change adaptively as the network went
”very deep” due to residual learning. The model was trained on MICCAI 2017
LiTS dataset and validated on 3DIRCADb with DICE 97.7% and 83% for liver
and lesion segmentation respectively.

In 2019, Jiang et. al [22] proposed a 3D FCN structure, composed of multiple
Attention Hybrid Connection Blocks (AHCBlocks) densely connected with both
long and short skip connections and soft self-attention modules. Same training
process with LiTS and 3DIRCADb datasets estimated DICE 95.9% and 73.4%
for liver and tumor segmentation accordingly.

At the moment a large number of solutions have been proposed for liver tumor
segmentation from CT images. The fully-automatic methods have received major
attention recent years, because it is meant to lift burden of segmentation from
human experts and exclude human bias and mistakes.
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Fig. 1. An example of contrast-enhanced CT scan showing the difficult case of lesion
segmentation when edges of the tumor barely distinguishable in the original image (on
the left). The red region denotes the ground truth mask of liver lesion (on the right).

2 Methods

2.1 Datasets

Liver For this research two datasets have been used: MICCAI 2017 Liver Tumor
Segmentation (LiTS) Challenge [20] and 3DIRCADb [15] (3D Image Reconstruc-
tion for Comparison of Algorithm Database).

The LiTS dataset contains of 201 contrast-enhanced 3D abdominal CT vol-
umes with different types of tumor contrast levels, abnormalities in tissues size
and varying amount of lesions. We have used this dataset for training our model.

The 3DIRCAD dataset includes 20 venous phase enhanced CT volumes from
various European hospitals with different CT scanners involving 120 liver tumors
of different sizes. We have evaluated our method on this dataset.

Expert radiologists have manually outlined liver tumor contours for all images
on a slice-by-slice basis in order to determine the ground truth. The 3Dircadb
dataset is segmented by a single radiologist, while the LiTS dataset is created
in collaboration with seven hospitals and research institutions and manually
reviewed by independent three radiologists.

Because of imbalanced classes, liver tumor areas are significantly less than
background, we have applied data augmentation to the training dataset. Such
techniques as elastic transformation, shifting, scaling, and rotating have been
used.

Kidney The 2019 Kidney Tumor Segmentation (KiTS) Challenge [23] training
dataset contained 210 different patients. The KiTS challenge required automatic
segmentation of 90 test patients for which the ground truth segmentations were
not released before the submission due date (29th of July, 2019).
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2.2 Semantic Segmentation of Images

Fig. 2. An example of the method segmentation: liver (green) and liver tumor (yellow)
segmentation.

For the purpose of this paper we have selected a variation of U-Net [8],
LinkNet-34 [24], where ResNet-34 [25] has been used as the feature encoder and
PyTorch implementation was from [26]. LinkNet-34 has a reasonable number of
parameters and a good balance between running time and accuracy.

One of the problems of deep learning with the CNN is that the learning phase,
where the network undergoes training process from scratch, can be very time-
consuming and may need a very large set of images. A simple yet effective transfer
learning strategy is introduced to overcome several problems at once. First of
all, pre-trained weights are already learnt to recognize patterns in images, the
network needs less time to converge to a new solution, usually a better solution
than in case of training from scratch. Transfer learning prevents or at least
mitigates over-fitting problem.

In our method, we have reused the ImageNet-trained ResNet-34 encoder
without freezing the weights during training process due to more advanced seg-
mentation CNN (compared to FCN-8s). However, to assist in more effective way
of using the pre-trained network, the learning rate has been reduced by factor of
10 when applied to the encoder, whereas to the randomly initialized LinkNet-34
decoder layers, the learning rate without any change has been applied.

The input layer of the LinkNet-34 model has been modified, instead of orig-
inal 3-channel RGB colour we have conducted experiments with single channel
and so-called 2.5D architecture [27]. Single channel is applicable due to that
all CT scans are grayscale and have only one colour channel. 2.5D architec-
ture proposed by Han [27] is a 2D deep CNN which takes a stack of adjacent
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slices from the volumetric images as input and produces the segmentation map
corresponding to the center slice.

As for the loss function, the binary cross entropy with negative DICE coef-
ficient (see Eq. 1) has been used,

loss(y, ŷ) = bc(y, ŷ)− log(dice(y, ŷ)), (1)

where y is a target mask, ŷ is the corresponding LinkNet-34 output, bc(y, ŷ)
is the binary cross entropy, dice(y, ŷ) is the DICE coefficient.

Training process has been performed on the LiTS dataset consisted of 131 pa-
tients with 58,638 image-mask pairs, whereas validation on 3DIRCADb dataset
has been done with two different approaches: tested on tumors larger than 100-
pixel area and on tumors of any size.

3 Results

Table 1. Comparison of liver and liver tumor segmentation results on 3DIRCAB
dataset.

Method VOE(%) RVD(%) DICE(%) Type

Li et al. [18] 3.57 ± 1.66 0.01 ± 0.02 98.2 ± 1 liver
H-DenseUNet 11.68 ± 4.33 -0.01 ± 0.05 93.7 ± 2 tumor

Deng et al. [29]
3D CNN 26.93 ± 8.51 6.55 ± 14.91 85 ± 6 tumor

Jin et al. [21] 4.5 -0.1 97.7 liver
RA-UNet 83 tumor

Huang et al. [30]
semi-automatic 27.05 ± 9.19 4.23 ± 19.28 84 ± 7 tumor

Jiang et al. [22] 95.9 liver
AHCNet 1.35 0.13 73.4 tumor

our 96.2 liver
LinkNet-34 [24] 78.8 tumor

3.1 Metrics

To evaluate performance of the segmentation task different metrics are applied,
although we have focused on widely used ones that are usually utilized for liver
and liver tumor segmentation such as the mean ratios of volume overlap error
(VOE), relative volume difference (RVD),

VOE =

[
1− |A ∩B|
|A ∪B|

]
, RVD =

|A| − |B|
|B|

, (2)
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and Dice similarity coefficient (DICE) [9], [16], [28].

DICE =
2× |A ∩B|
|A|+ |B|

, (3)

where A it the segmentation result and B is the ground truth.

3.2 Comparison to other methods

As mentioned before, we have trained the model on the LiTS dataset and evalu-
ated it on the 3DIRCADb dataset. For comparison, we have chosen papers with
the similar approach, see Table 1.

Some techniques have been more useful than others for the segmentation task.
For example, data augmentation has had positive contribution to the accuracy
of the method, while utilizing widely used 2.5D approach has not improved any
DICE metrics. The approach with different learning rates has allowed to converge
the model more quickly and to a better solution.

4 Conclusion

Our goal was to research a different approach to the segmentation task and
show that the training pipeline could matter as much as the CNN architecture.
While using of advanced CNN models may be constrained by hardware and
the complexity of their implementation, a customized training pipeline could
achieve competitive baseline results with relatively simple CNNs in fraction of
time what would normally required for more complex CNNs. We deliberately
selected an off-the-shelf CNN (LinkNet-34), which was not the state-of-the-art
network. Consistently applying different kinds of techniques, we have reached
competitive results and outperformed at least one compound CNN [22] for liver
and liver tumore segmentations..

The proposed method was applied to the 2019 Kidney Tumor Segmenta-
tion Challenge [23], and the corresponding results were submitted for evaluation
achieving the 38th place out of 106 submissions, where our Dice scores were
0.9638 (kidney), 0.6738 (tumor), and 0.8188 (composite, i.e. mean of kidney and
tumor scores).
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