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Abstract. Recent work has shown that U-net is a straight-forward and successful 

architecture, it quickly evolved to a commonly used benchmark in medical image 

segmentation, Which nnU-Net had better performance We improved the nnU-

Net model by incorporating a new image pyramid to preserve contextual features 

and attention gate. In order to let different kinds of class details more easily ac-

cessible at different scales, we injected the encoder layers with an input image 

pyramid before each of the max-pooling layers. We proposed a new image pyra-

mid mechanism with dilated convolution that counters the loss of information 

caused by max-pooling, re-introducing the original image at multiple points 

within the network. We evaluated this model in the 2019 Kidney Tumor Segmen-

tation Challenge. and got the dice coefficient 0.958 of kidney and 0.847 of tu-

mors. 

 

Keywords:  Semantic Segmentation, Multiple input, Medical Imaging, U-Net 

1 Introduction 

       There are more than 400,000 new cases of kidney cancer each year [1], and surgery 

is its most common treatment [2]. Due to the wide variety in kidney and kidney tumor 

morphology, people are currently concerned with how tumor morphology is related to 

surgical results, [3,4] and developing advanced surgical planning techniques [5]. Auto-

matic semantic segmentation is a promising tool for these efforts, but morphological 

heterogeneity makes it a challenge. 

  Medical image analysis faces difficulty balancing precision and recall due to small 

regions-of-interest (ROI) found in medical images. Research efforts to address small 

ROI segmentation propose more discriminative models such as attention gated net-

works [6]. CNNs with attention gates (AGs) focus on the target region, with respect to 

the classification goal, and can be trained end-to-end. At test time, these gates generate 

soft region proposals to highlight salient ROI features and suppress feature activations 

by irrelevant regions. To address the issues of kidney cancer segmentation, we combine 

attention gated U-Net with a new image pyramid mechanism.  

Our major contributions include: (1) a deeply supervised attention U-Net [5], im-

proved with a multi-scaled input image pyramid for better intermediate feature repre-

sentations. (2) a new image pyramid mechanism with dilated convolution. 
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2 METHODOLOGY 

2.1 Network architectures 

In this paper, we present the framework bases on the original U-Net [6] and the nnU-

Net [8]. At the deepest stage of encoding, the network has the richest possible feature 

representation. However, with cascaded convolutions and non-linearities, spatial details 

tend to get lost in the high-level output maps. This makes it difficult to reduce false 

detections for small objects that show large shape variability [5]. To address this issue, 

we use soft attention gates (AGs)(Fig.3) to identify relevant spatial information from 

low-level feature maps and propagate it to the decoding stage. 

 
Fig. 1. Proposed Attention U-Net architecture with input image pyramid and deep supervised 

output layers. 

 

 

 

Moreover, since different kinds of class details are more easily accessible at differ-

ent scales, we inject the encoder layers with an input image pyramid (Fig.2) before each 

of the max-pooling layers. Combined with deep supervision, this method improves seg-

mentation accuracy for datasets where small ROI features can get lost in cascading 

convolutions and facilitates the network learning more locality aware features with re-

spect to the classification goal 
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Fig. 2. A new image pyramid mechanism with dilated convolution. First, the image is sam-

pled to the same resolution as the current layer with trilinear interpolation. Then after a 3x3 di-

lated conv. After concat with feather maps, add to feather maps. 

 

Fig.3. Schematic of additive attention gate (AG) adapted from [7]. Input features x𝑙 

are scaled with attention coefficients αi to propagate relevant features to the decoding 

layer output x̂l . The coarser gating signal g provides contextual information while spa-

tial regions from the input x𝑙 provide locality information.  

2.2 Experiment 

Preprocessing. All data is cropped to the region of nonzero values. CNNs do not 

natively understand voxel spacings. In medical images, it is common for different scan-

ners or different acquisition protocols to result in datasets with heterogeneous voxel 

spacings. To enable our networks to properly learn spatial semantics, all patients are 

resampled to the median voxel spacing of their respective dataset, where third order 

spline interpolation is used for image data and nearest neighbor interpolation for the 

corresponding segmentation mask. The described scheme is independently applied to 

each case and each modality. Only two levels of headings should be numbered. Lower 

level headings remain unnumbered; they are formatted as run-in headings. [8] 

Training Procedure. Our U-Net uses 30 feature maps at the highest resolution lay-

ers. Here we start with a batch size of 2. 
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All models are trained from scratch and evaluated using five-fold cross-validation 

on the training set. We train our networks with a combination of dice and cross-entropy 

loss: 

                                                        Ltotal=Ldice+LC E                                                   (1) 

we compute the dice loss foreach sample in the batch and average over the batch. 

The dice loss formulation used here is a multi-class adaptation of the variant proposed 

in [9]. Based on past experience [10] we favor this formulation over other variants [11]. 

The dice loss is implemented as follows: 

                                                    Ldice=-
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where u is the softmax output of the network and v is a one hot encoding of the 

ground truth segmentation map. Both u and v have shape I × K with i ∈ I being the 

number of pixels in the training patch/batch and k ∈ K being the classes. We use the 

Adam optimizer with an initial learning rate of 3 × 10-4 . We define an epoch as the 

iteration over 250 training batches. During training, we keep an exponential moving 

average of the validation( lMA
v ) and training (lMA

t ) losses. Whenever lMA
t  did not improve 

by at least 5 × 10-3 within the last 30 epochs, the learning rate was reduced by factor 5. 

The training was terminated automatically if l v MA did not improve by more than 5 

×10-3  within the last 60 epochs, but not before the learning rate was smaller than 

10-6.(8) 

3 Results 

Table 1. Results 

 Dice 

Kidney 0.958 

Tumor 0.847 

For the test cases we use the five networks obtained from our training set cross-

validation as an ensemble to further increase the robustness of our models. 
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