2019 Kidney Tumor Segmentation Challenge
Method Manuscript

MengLei Jiao, Hong Liu

Beijing Key Laboratory of Mobile Computing and Pervasive Device Institute of
Computing Technology, Chinese Academy of Sciences, Beijing, China

Abstract. This paper framework in detail for KiTS19, which is the
2019 Kidney Tumor Segmentation Challenge. We adopt two model Re-
sUNetSM and DeepLabV3 plus to segment kidney and tumor respec-
tively. Firstly, we propose a model ResUNetSM to segment kidney, which
uses ResNet for encoder, and adopts SELayer and MobileBlock for de-
coder. ResUNetSM also adopts ASPP and skip-connect structure. To
segment tumor region, we adopt DeepLabV3 plus and segment tumor
in the 3D ROI region from above kidney segmentation results to reduce
noise. Finally, we use 3DCRF and 3D connected component analysis as
post-processing to improve the final segmentation results. Our frame-
work gets the 96.31% mean dice for kidney and 81.64% mean dice for
tumor on validation set.

Keywords: CT - semantic segmentation - lession - deep learning - CNN.

1 Introduction

The goal of KiTS19 is to accelerate the development of reliable kidney and
kidney tumor semantic segmentation method. KiTS challenge provide the ground
truth of semantic segmentation for arterial phase abdominal CT scans from 300
unique kidney cancer patients. Among these data, 210 patient data is released
for model training and validation, and the remaining 90 is used for objective
model evaluation.

Tumor segmentation is a very challenging problem due to significant varia-
tions in location, size, shape, intensity, texture, and the number of occurrences of
tumor across different patients. To tackle these difficulties, many segmentation
methods have been proposed, including intensity thresholding, region growing,
and deformable models. Recently, fully convolutional neural networks (FCNs)
have achieved great success. 2D FCNs include UNet architecture [1], the multi-
channel FCN [2], and the FCN based on VGG-16 [3]. 3D FCNs replace 2D
convolutions by 3D convolutions with volumetric data input [4]. There is also
2.5D structure, which use only a few adjacent slices [5]. The combination of 2D
FCNs and 3D FCNs also achieved good results [6].

This paper focuses on kidney and tumor segmentation.Figure 1 shows our
proposed framework, which uses two models. Firstly, we propose ResUNetSM
for kidney segmentation which combining advantage of ResNet[7], DeepLabV3
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Fig. 1. proposed framework for kidney segmentation and tumor segmentation.

plus[8], MobileNetv2[9] and SENet[10], The ResUNetSM for kidney segmenta-
tion is 2D. Secondly, we only use DeepLabV3 plus for tumor segmentation. The
DeepLabV3 plus for tumor segmentation is 2.5D, which uses several adjacent
axial slices as input to the model. These two models are independent when
training. During inference phase, we first use ResUNetSM for kidney segmenta-
tion and then appropriately expand the 3D region. Then, we only use CT image
in the 3D ROI for tumor segmentation. Thirdly, we use dense 3DCRF and 3D
connected component analysis as post processing to improve the tumor segmen-
tation result. Finally, we combine the result of kidney segmentation and tumor
segmentation, in figure.1

2 Dataset and preprocessing

There are 300 CT scans in KiTS19[11], and 210 scans are released for training
and 90 scans for test. In this paper, we divide the 210 CT scans into train set
and validation set, There are 195 CT scans for training and 15 CT scans for
validation. We use the raw CT scans in this work. For all CT scans, the slice
thickness ranges from 1lmm to dmm, and the size is 512x512 pixels. But the
number of slices in each scan differs greatly and varies between 29 and 1059.
There are 15856 slices contains kidney, 5696 slices contains tumor and 29068
slices contains other tissues.

To make the original CT image clearer, we truncated the image Hounsfield
values of all scans to the range of [-512,512] to ignore irrelevant image details.
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3 Method

We propose a framework for kidney and tumor segmentation. We use proposed
ResUNetSM model for kidney segmentation and DeeplabV3 plus model for tu-
mor segmentation. In our training stage, kidney segmentation training and tu-
mor segmentation training are independent. After finishing the training of two
model, we first use ResUNetSM to get the result of kidney segmentation which
may contains tumor regions. Then we get a 3D bounding box which contains
kidney, but we can’t guarantee that all kidney and tumor in this bounding box,
so we expand it. After that, we only use CT slices which are contained in the
bounding box for tumor segmentation by DeepLabV3 plus model. Finally, we
use 3DCRF and 3D connected component analysis method to optimize the result

of tumor segmentation and merge kidney and tumor segmentation.
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3.1 ResUNetSM for Kidney Segmentation

The proposed ResUNetSM model is shown as Fig. 2, which consists of encoder
and decoder parts. For encoder part, it is based on ResNet101 and consists of
one enter layer and four blocks. Each block has a short-range residual connec-
tion. For decoder part, we combine the SELayer and MobileBlock in each block
as Fig. 2 shows. The SELayer[10] can model the interdependencies between fea-
ture channels, which is a substructure and can be embedded in other structures.
The MobileBlock[9] is a lightweight mobile network structure based on inverted
residual structure, which can significantly reduce model parameters and remain
similar accuracy. After encoding, we add the ASPP layer to get multi-scale infor-
mation. In addition, some feature information may be lost during the decoding
process. So we add long range concatenation connection between encoder and
decoder, which connects the first block feature from encoding and the last block
feature from decoding. This model can combine information from various scales.

3.2 DeepLabV3 plus for tumor Segmentation

The DeeplabV3 plus is used for tumor segmentation, which is also ResNet101.
During training, we set the different learning rate for different resolution.

3.3 Loss function and Optimizer

We adapted the dice loss in our method. which is usually used for natural image
and medical image segmentation[12]. The function of dice loss is:

2 X pred X target

loss =
pred + target
We adapted Adam optimizer for kidney segmentation and Stochatic Gradi-
ent Decent(SGD) optimizer for tumor segmentation. Adam optimizer converges
quickly and SGD optimizer is very stable.

3.4 Implementation details

In this section, we will introduce our method in detail. During training, the
ResUNetSM and DeepLabV3 plus are independent with the same input resolu-
tion 3x512x512. Because the raw slice is 512x512 pixels, so we change the input
of ResUNetSM to 3x512x512 by repeating three times of the same slice. And
we change the input of DeepLabV3 plus to 3x512x512 by concatenating three
neighboring slices, and predicting the middle one. During inference, we first used
ResUNetSM to get the result of kidney segmentation, then find the first slice
and last slice with kidney on z-axis, find the first column and last column with
kidney on x-axis, find the first row and last row with kidney on y-axis. Then we
use the boundary information to get the 3D bounding box which only contains
kidney in this CT sequence. For kidney tumor should be located in kidney re-
gions. While we can’t make sure that 3D bounding box is complete, so we expand
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the 3D bounding box on x-axis, y-axis and z-axis. We send the processed CT
image to the DeepLabV3 plus model, and get the result of tumor segmentation.
Then, we perform tumor segmentation in this with 3D bounding box. Because
tumor region is small, the result may coarse and have much noise, so we further
use 3DCRF[13] and 3D connected component analysis as the post-processing to
improve segmentation result. Finally, we combine the result of kidney and tumor
segmentation. The pipeline of inference phase is in Fig. 1.

3.5 Experiment details

Our models are implemented using the public popular frame PyTorch. We adopt
ResNet101 pre-train model on ImageNet. Both models use Dice loss as loss
function. During training, ResUNetSM uses adam optimizer, and DeepLabV3
plus uses SGD optimizer. Each model is trained for 100 epochs. The initial
learning rate is 0.002 for ResUNetSM model and 0.007 for DeepLabV3 plus
model. The learning rate declines according to the following formula:

epoch 0.9

Ir =baselr = (1 —
100

Because the tumor sample is small, we adopt oversampling method when training
DeepLabV3 plus. For every sample, we give weight ratio of kidney and tumor is
0.3 : 0.7 with 30% probability to get the kidney sample and 70% probability to
get the tumor sample.

Training each model took about two days using two NVIDIA 1080Ti GPU
with 12GB memory. Applying the model take about 0.02 second to generate the
segmentation result for each slice. The total processing time for final segmen-
tation thus depends on the image resolution and the number of slices for each
scan, which is ranged from 7 seconds to 211 seconds for the KiTS19 test data.

We use 3DCREF for post-processing, the parameter of SDCRF is very impor-
tant. It has 9 parameters to optimize. The parameters comes from [1]. and can
be optimized by BOBYQA algorithm. A set of parameters may perform well in
one case but poorly in another. So we manually found some parameters in our
experiment which can improve the result of each case in validation set as shown
in Table. 1.
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Table 1. 3dcrf parameters

name value
pos_x_std
pos_y-std
pos_z_std
bilateral _x_std
bilateral_y_std
bilateral z_std
bilateral_intensity _std
pos-w
bilateral _w

w
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Fig. 3. Training loss lines with the blue one as kidney loss and yellow one as tumor
loss.

4 Result on validation set

Table 2. Result on validation set

method kidney dice|tumor dice|kidney-tumor dice
ResUNetSM_DeepLabV3+ 0.9392 0.7424 0.8408
ResUNetSM_DeepLabV3+_3DCRF 0.9412 0.7542 0.8477
ResUNetSM_DeepLabV3+_3DCCA 0.9630 0.8134 0.8882
ResUNetSM_DeepLabV3+4_3DCCA_3DCRF| 0.9631 0.8164 0.8897
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The loss lines during training are shown as Fig. 3. During inference stage, when
use 3DCRF and 3D connect component analysis(3DCCA), the result on valida-
tion set is shown as Table. 2. The result shows the base dice value for kidney is
0.9392, for tumor is 0.7424. The result is improved to 0.9412 and 0.7542 after
3DCREF. The result is improved to 0.9630 and 0.8134 after 3D connect compo-
nent analysis. On the basis of the previous, the result is improved to 0.9631 and
0.8164 after 3DCRF. So, the post-processing is also important for medical image
segmentation. It can remove a lot of misidentification, and improve recognition
accuracy. However, this is just the result on the validation set, there may be
some bias. We still can’t know the results on the test set before the leaderboard
is announced.
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