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Abstract. Kidney and kidney tumor segmentation are essential steps
in kidney cancer surgery. In this paper, we focus on addressing hard
cases and exploring the kidney tumor shape prior rather than develop-
ing new convolution neural network architectures. Specifically, we train
additional tumor segmentation networks to bias the ensemble classifier to
tumor. Moreover, we propose the compact loss function to constrain the
shape of the tumor segmentation results. Experiments on KiTS challenge
show that both hard mining and compact can improve the performance
of U-Net baseline.
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1 Introduction

There are more than 400,000 new cases of kidney cancer each year1, and surgery
is its most common treatment [2]. Due to the wide variety in kidney and kidney
tumor morphology, there is currently great interest in how tumor morphology
relates to surgical outcomes, [3,4] as well as in developing advanced surgical
planning techniques [5]. Automatic semantic segmentation is a promising tool
for these efforts, but morphological heterogeneity makes it a difficult problem.

2 Method

There are lots of convolutional neural network (CNN) architectures for medical
image segmentation tasks. In this work, instead of exploring new or existing
CNN architectures, we focus on dealing with the hard class and exploring the
shape prior of kidney tumor.

2.1 Baselines: Vanilla 3D U-Net and cascaded 3D U-Net

We use the 3D U-Net [4] as the main network architecture as it has been proved
to be a strong baseline for many segmentation tasks [7]. We build two baselines.

1 Kidney Cancer Statistics. World Cancer Research Fund, 12 Sept. 2018,
www.wcrf.org/dietandcancer/cancer-trends/kidney-cancer-statistics.
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Specifically, the first baseline trains a 3D U-Net to segment both kidney and
tumor. The second baseline employs cascaded pipeline which has achieved state-
of-the-art performance in recent atrial segmentation challenge [9] and thoracic
organs segmentation challenge [5]. In particular, we firstly segment the kidney
by a 3D U-Net and corp the kidney region-of-interest (ROI), and then a new 3D
U-Net is used to segment both kidney and tumor in the ROI.

2.2 Biased U-Net and Compact loss for tumor segmentation

Biased U-Net After hard mining, we find the accuracy of tumor is still signif-
icantly worse than the accuracy of kidney. The main reason is class imbalance.
Many methods deal with label imbalance from data level, such as oversampling
the minor class data. Instead of oversampling the tumor patch for training, we
“oversample” the model to eliminate class imbalance. Specifically, we train a
U-Net to only segment kidney tumor, termed as biased U-Net.

Compact loss Most kidney lesions have a ball shape in 3D or a nearly cir-
cle shape in 2D in the training sets. The commonly used loss functions (e.g.,
cross entropy, Dice loss [8]) do not have shape constrain. Thus, we propose the
compact loss function to impose explicitly compact shape regularization. Shape
compactness is usually defined as

C =
P 2

A
(1)

where C is the shape compactness, P and A are the shape perimeter and area,
respectively. We use g, s denote gound truth and predicted segmentation, the
compact loss is defined as

LC =
(Length of s)2

Area of s
≈

(
∫
Ω
∇s dx)2∫
Ω
s dx

(2)

To avoid the training stuck in trivial local minima, in practice, we combine the
proposed compact loss function with region-based active contour loss [3].

LAC = Regionin + Regionout =

∫
Ω

[s(1− g)2 + (1− s)g2]dx (3)

Like tradition active contour models which need an initialization, the pro-
posed compact loss uses the trained model as initialization. In other words,
compact loss is used to finetune and refine the segmentation generated by com-
monly used loss functions (in this paper, it is the sum between Dice loss and
cross entropy).

3 Experiments and Results

Data: We only use official KiTS challenge dataset [6] and do not use any
external dataset. All the training data are interpolated to a common spacing
(0.7816, 0.7816, 3). We randomly divide the training set into five folds.
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Training protocol: All the U-Nets are trained based on nnU-Net [7], which is a
powerful implementation of U-Net. We use the sum between Dice loss and cross
entropy as the default loss function. For cascaded U-Net, we train a new version
with the sum between Dice and TopK loss. For the biased U-Net, we use the
default loss function firstly, and then finetune with compact loss. We use adam
optimizer with an initial learning rate 3e4. For finetuning, the learning rate is
decreased by 10. We train the model on local GPU server with four TiTan-XP
GPUs and two Intel Xeon E5-2650V4 CPUs. Training each model costs about
four days.

Results on training set: We summarize the quantitative results in Tab 1.
There is no significant difference for kidney Dice score between different seg-
mentation methods. In fact, a vanilla U-Net performs quite well on kidney seg-
mentation. For tumor segmentation, cascaded pipeline performs better than seg-
menting kidney and tumor directly. Biased U-Net with compact loss can further
improve segmentation performance of tumor.

Table 1. quantitative results of kidney and kidney tumor segmentation. (All the results
are based on 5-fold cross validation.)

Model Kidney Dice Tumor Dice

Vanilla U-Net with Dice + CE loss 0.9663 0.7778
Cascaded U-Net with Dice + CE loss 0.9682 0.8243
Cascaded U-Net with Dice + TopK loss 0.9753 0.8192
Biased U-Net and Compact Loss - 0.8328

Testing: All the test data are also re-sampled to (0.7816, 0.7816, 3). Then, each
test case is passed the trained networks. Test time augmentation (mirroring) is
also used to boost performance.

Ensemble and Post-processing Ensemble is an effective way to further ob-
tain performance gain which has been proved by many participants in previous
segmentation challenges ([1],[2]). In our work, the final kidney segmentation re-
sults are obtained by the majority vote of two cascades U-Nets and a single
kidney segmentation U-Net. Simply combining tumor segmentation results by
the majority vote of the last three models will miss some detected lesions. Thus,
we group all the tumor results in the last three models, and further fuse with
the tumor results in the first model (vanilla U-Net) by reconstruction2. This is
because the first model has better sensitivity while the combination of the last
three models has better specificity for tumor segmentation.

2 skimage.morphology.reconstruction
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Moreover, there are two types of outlier, small isolated points and big over-
segmentation, in the final segmentation. Fortunately, these outliers do not touch
with the true kidney. Thus, we can remove the isolated points smaller 20,000
voxels by skimage.morphology.remove small objects, and remove the big over-
segmentation by the relative position relationship. Specifically, the central points
of two kidneys is close in axis plane, while the central points of ourliers will have
obvious deviation.

4 Discussion and Conclusion

In this paper, we use several U-Nets to deal with kidney and tumor segmentation.
The main scientific contribution is the compact loss, which is a regularization to
constrain the tumor segmentation with compact shape. It the near feature, we
will investigate the compact loss with more combinations, such as coupled with
Dice loss or cross entropy loss.

We acknowledge that using various U-Nets ensemble is not a concise way for
segmentation tasks. Although ensemble can obtain a few performance improve-
ments, it only has limited usage in clinical practice. It is desirable to build a new
challenge branch that only allows to use single model.

Open questions: 1) Is Dice score enough to evaluate the segmentation per-
formance? A major concern is that Dice score is sensitive to small tumor, as
changing a few voxels can change Dice score significantly. In addition, if a pa-
tient has both a big tumor in left kidney and a vary small tumor in right kidney,
but a algorithm only segments the big tumor and misses the small tumor. In
this case, although a high Dice score may be obtained, we can not think the
algorithm has great performance. 2) What accuracy is clinically acceptable? 3)
What the effects of different segmentation accuracy have on clinical practice?
For example, are there any differences between kidney Dice score 0.95 and 0.97
for clinical usage? 4) If the current segmentation accuracy is not enough for
clinical usage, how long it will take if radiologists manually refine the current
segmentation results to make it clinically acceptable? Does it really save time
compared with manual segmentation?
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