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Abstract. There are more than 400,000 new cases of kidney cancer each year, 
and surgery is its most common treatment. Due to the wide variety in kidney and 
kidney tumor morphology, there is currently great interest in how tumor mor-
phology relates to surgical outcomes, as well as in developing advanced surgical 
planning techniques. Automatic semantic segmentation is a promising tool for 
these efforts, but morphological heterogeneity makes it a difficult problem. The 
goal of this challenge is to accelerate the development of reliable kidney and kid-
ney tumor semantic segmentation methodologies. We have produced ground 
truth semantic segmentations for arterial phase abdominal CT scans of 300 
unique kidney cancer patients who underwent partial or radical nephrectomy at 
our institution. 210 of these have been released for model training and validation, 
and the remaining 90 will be held out for objective model evaluation. Recently, 
fully convolutional neural networks (FCNs), including 2D and 3D FCNs, serve 
as the backbone in many volumetric image segmentation. However, 2D convo-
lutions cannot fully leverage the spatial information along the third dimension 
while 3D convolutions suffer from high computational cost and GPU memory 
consumption. Our method consists of 2.5D convolutions for efficiently extracting 
g intra-slice and inter-slice features and densely supervised, data augmentation 
for generate better segmentation. 
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1 Method 

Since the KiTS19 dataset is a set of complete CT scan volumes. Each case may include 
non-kidney region such as the chest or the foot. Therefore, first, we train a ResUNet to 
get a coarse segmentation of the kidney with the region of interest (ROI) in the volume. 
The extracted kidney then into DenseUNet for kidney and tumor segmentation. Finally, 
post-processing the results. 

 
1.1 ResUNet 

The model we use both long-range UNet and short-range ResNet skip connections (res-
idue connections), as shown in Fig. 1. The residual connections help promote infor-
mation propagation both forward and backward through the network, and improve 
model convergence and performance. But we design the model to work in 2.5D instead 
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of 3D. In addition, because the purpose of this phase is to find the ROI position of the 
kidney in the volume. Therefore, we merge kidney and tumor of the target to one class.  

The model input is a stack 5 slice of adjacent axial, providing large image content in 
the axial plane and extra contextual information in the orthogonal direction. The model 
output is a segmentation map corresponding to the center slice of the stack. In addition 
to larger input size, more layers and a much larger number of feature channels can be 
used in each layer than a 3D model. All convolutional layers use a filter size of 3×3 and 
use the Parametric Rectified Linear Unit (PReLU) as the nonlinear activation function. 
The spatial size and the number of channels of the output feature maps of each convo-
lutional layer are shown in Fig. 1. 

 

 

Fig. 1. ResUNet architecture for kidney coarse segmentation 

1.2 DenseUNet 

The DenseUNet follows the structure of DenseNet-161, which is composed of repeti-
tive densely connected building blocks with different output dimensions. In each 
densely connected building block, there are direct connections from any layer to all 
subsequent layers. One advantage of the dense connectivity between layers is that it has 
fewer output dimensions than traditional networks, avoiding learning redundant fea-
tures. Moreover, the densely connected path ensures the maximum information flow 
between layers, which improves the gradient flow, and thus alleviates the burden in 
searching for the optimal solution in a very deep neural network. 
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However, the original DenseNet-161 is designed for the object classification task 
while our problem belongs to the segmentation topics. Moreover, a deep FCN network 
for segmentation tasks actually contains several max-pooling and upsampling opera-
tions, which may lead to the information loss of low-level (i.e., high resolution) fea-
tures. Given above two considerations, we develop a DenseUNet. The detailed structure 
is shown in the Table 1, which inherits both advantages of densely connected path and 
UNet-like connections. Specifically, the dense connection between layers is employed 
within each micro-block to ensure the maximum information flow while the UNet long 
range connection links the encoding part and the decoding part to preserve low-level 
information. 

We also added densely supervised in DenseUNet. Specifically, each of the upsam-
pling feature maps channel will be converted to 3 by 1 × 1 conv, and calculated loss 
with the reduced size of target image. The advantage of this is that each upsampling 
will be as similar to the target as possible. 

Table 1. Architectures of the DenseUNet. The symbol 𝑘 means kernel size, 𝑠 means stride, 𝑝 
means padding and 𝑐ℎ means output channels. “[ ] × 𝑑” means this block is repeated for 𝑑 times. 
Note that every “conv” is contain “Batch Normalization + ReLU + Conv” and upsampling is 
bilinear interpolation. 

 Feature map (ℎ × 𝑤) DenseUNet 

input 512 × 512 - 

convolution 1 256 × 256 conv (k = 7, s = 2, p = 3, ch = 96) 

pooling 128 × 128 max pool (k = 3, s = 2, p = 1) 

dense block 1 128 × 128 ൤
conv (k = 1, ch = 192)

conv (k = 3, p = 1, ch = 48)
൨ × 6 

transition layer 1 64 × 64 conv (k = 1) + average pool (k = 2) 

dense block 2 64 × 64 ൤
conv (k = 1, ch = 192)

conv (k = 3, p = 1, ch = 48)
൨ × 12 

transition layer 2 32 × 32 conv (k = 1) + average pool (k = 2) 

dense block 3 32 × 32 ൤
conv (k = 1, ch = 192)

conv (k = 3, p = 1, ch = 48)
൨ × 36 

transition layer 3 16 × 16 conv (k = 1) +  average pool (k = 2) 

dense block 4 16 × 16 ൤
conv (k = 1, ch = 192)

conv (k = 3, p = 1, ch = 48)
൨ × 24 

upsampling layer 1 32 × 32 
upsampling (k = 2)
+ skip connection (dense block 3) 

+conv (k = 3, p = 1, ch = 768) 

upsampling layer 2 64 × 64 
upsampling (kernel = 2)
+ skip connection (dense block 2) 

+conv (k = 3, p = 1, ch = 384) 

upsampling layer 3 128 × 128 
upsampling (k = 2)
+ skip connection (dense block 1) 

+conv (k = 3, p = 1, ch = 96) 

upsampling layer 4 256 × 256 
upsampling (k = 2)
+ skip connection (convolution 1) 

+conv (k = 3, p = 1, ch = 96) 

upsampling layer 5 512 × 512 
upsampling (k = 2) 

+conv (k = 3, p = 1, ch = 96) 
convolution 2 512 × 512 k = 3, p = 1, ch = 3 
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1.3 Post-Processing 

We use 3D connected components to remove some wrong segmentation result.，Spe-
cifically, it is used 26-connected algorithm. 26-connected pixels are neighbors to every 
pixel that touches one of their faces, edges, or corners. These pixels are connected along 
either one, two, or all three of the primary axes. In addition to 18-connected pixels, each 
pixel with coordinates (𝑥 ± 1, 𝑦 ± 1, 𝑧 ± 1), (𝑥 ± 1, 𝑦 ± 1, 𝑧 ∓ 1), (𝑥 ± 1, 𝑦 ∓ 1, 𝑧 ±
1), (𝑥 ∓ 1, 𝑦 ± 1, 𝑧 ± 1),  is connected to the pixel at(𝑥, 𝑦, 𝑧).  

Since the tumor will connect with the kidney and each person will only have at most 
two kidneys. Therefore, first, we merge the kidneys and tumor of the segmentation 
result and ignore the background. Then each case takes only two largest components as 
the new result. However, the case may have only one kidney. For this reason, we will 
remove if this component are small than 0.1 times of the largest component,  

1.4 Data Augmentation 

We use data augmentation to improve the variability and diversity of training data, 
which contains Horizontal Flip, Random Brightness Contras, Random Gamma, Grid 
Distortion and Shift Scale Rotate. 

2 Implementation Detail 

The model is implemented on PyTorch. We employed cross-entropy function for 
ResUNet and generalized dice loss for DenseUNet as the loss function. The initial 
learning rate was 0.0001 and multiplied by 0.1 when loss is not decrement in 5 epoch. 
Each model was trained for 100 epochs.  

Both models were trained from scratch using the Adam optimization algorithm. Data 
augmentation is perform during model training of each sample. The input for ResNet 
is the original slice image (512×512), and the input for DenseUNet is slice image after 
ROI crop and padding to 512×512. Batch size is 32. We are using 4 NVIDIA Tesla 
V100 GPU with 32GB memory of each GPU for training. 

Our source code is available at https://github.com/nitsaick/kits19-challenge after the 
results announcement. 

 
  


