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Abstract. We describe a method for the segmentation of kidney and
kidney tumors based on computed tomography imaging, based on the
KITS 2019 challenge dataset.

Introduction

The KITS dataset [2] is a collection of CT volumes, with a large variety of slice
thicknesses, in-plane resolution, and coverage, of patients with kidney tumors.
The data is presented together with annotations of healthy-appearing kidney tis-
sue and kidney tumors. We present in this short paper a description of a method
to segment both kidney and tumors in this dataset, using a fully-convolutional
neural network with extensive automatic post-processing.

Kidney tumors can have a variety of appearances, and can be small and com-
pletely surrounded by healthy kidney tissue, or large (larger than the remaining
healthy kidney tissue) and protrude from the kidney itself. This heterogeneity,
together with the variety of spatial resolutions in the KITS dataset and lack of
soft tissue detail make kidney tumor segmentation a challenging task. In addi-
tion, the ratio of kidney tumor voxels to non-tumor voxels is low: only about
0.2% of voxels included in the training dataset are labelled as tumor. On a per-
case basis, the ratio of non-tumor to tumor voxels ranges from 20:1 to 200000:1,
with the average ratio being approximately 500:1. As a result, to train a segmen-
tation algorithm successfully on this dataset, we will need to employ methods
to ensure that the gradients coming from tumor voxels are not overwhelmed by
those coming from non-tumor voxels.

The CT images in the KITS dataset are presented as axial slices, with varying
slice thickness. Given this variation in the data, an obvious solution would be
to train a segmentation algorithm operating on 2D slices only. However, such
an algorithm would, we hypothesize, have difficulty distinguishing tumor tissue



from other healthy organs, especially where the healthy-appearing kidney tissue
is not visible in the 2D slice. For this reason, we train our classifier on data
which has been resampled to 1mm? isovoxels. We train a fully-convolutional
neural network, with an architecture similar to one previously applied to brain-
tumor segmentation, multiple sclerosis lesion segmentation, and neuroanatomy
segmentation. The network is trained on anisotropic 13*¥180*320 sub-volumes
sampled from the training data, using a 3D-to-2D architecture which predicts the
labels of the centre slice of the input volume. The orientation of the anisotropic
training volumes can be axial, sagittal or coronal, meaning that the resulting
network can segment the target tissues in all three planes. The resulting network
has extremely high performance on detecting healthy kidney tissue, but suffers
from outliers in the detection of tumor tissue: we therefore first identify regions
containing tissue having a high likelihood of containing kidney tissue, and mask
detected tumor tissue not coming from these regions.

Pre-processing and data handling

In order to make the problem of segmenting kidney tumors more tractable, we
initially resampled all volumes to have 1mm isotropic resolution: CT images were
resampled using trilinear interpolation, and label maps using nearest neighbour
interpolation. Between cases, the coverage of the CT images varies dramatically:
some cases show only the area immediately surrounding the kidneys, while other
cases are located adjacent to various healthy or pathologic body structures, e.g.
the intestine. The amount of homogenous fatty tissues varies a lot among indi-
viduals. To further standardise the inputs to our network during training, we
cropped each resampled volume to five slices above the first axial slice containing
kidney or tumor tissue to five slices below the last axial slices containing kidney
or tumor tissue. (This causes problems in classifying tissue in regions of the body
not seen during training, which we solve by applying extensive post-processing).

We windowed the CT values in the volumes, such that values below -50 were
set to -50, and values above 450 were set to 450. Intensities were normalized in
each training volume, by dividing by the mean of voxel intensities above -50 and
below 450, and dividing by the standard deviation of those voxels.

152 of the 190 available training cases were selected randomly for training the
network, and 8 of the remaining cases were selected to assess performance during
training.

The modified DeepSCAN architecture

The default choice for neural network architectures has for some time been the
variations on the U-net [9]. In particular, the winning architecture in the recent
Medical image segmentation decathlon was a based on a 3D U-net variant. [4].



However, architectures of this style have significant drawbacks: in particular, if
the volume to be segmented is large, segmentation must proceed patch-by-patch.
Not only does this limit the receptive field of the classifier: since segmentation
accuracy deteriorates at the borders of these patches, it is often necessary to
overlap the patches substantially, increasing the computation time of applying
the classifier.

The DeepSCAN architecture has been recently used to segment brain tumors
[6], MS lesions [8], and brain anatomy [7]. Here we apply it so kidney tumor
segmentation. The architecture is pictured in Figure 1: it is broadly the same
as those used in the above papers, being a hybrid of U-net with a smaller-than-
usual number of pooling layers, and a bottleneck layer consisting of dense blocks
[3] of dilated convolutions. In the case of kidney segmentation, instead of batch
normalization we use Instance Normalization, allowing stable training on batches
of size 1.
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Fig. 1. The DeepSCAN architectures, as applied to kidney tumor segmentation

Training

The network segments the volume slice-by slice: the input data is thirteen consec-
utive slices, Ground truth for such a set of slices is the lesion mask of the central
slice. Input images were initially cropped to remove as much empty space as pos-
sible. Batch size during training was 1. As a result, the input tensor to the model
has dimensions 1*1*13*180*320. Models were trained using a cosine-annealing
learning rate schedule, in which the learning rate was varied between le-5 and
le-9 during each epoch.

Slices from all three directions (sagittal, axial, coronal) were fed to the classifier
for training. Examples of the different segmentations in those three directions
(just for the whole tumor label) can be seen in Figure 77.

The classifier was trained to segment three tissue classes independently: whole
kidney (labels 1 and 2), healthy kidney (label 1), and tumor (label 2). We em-



ployed a number of techniques to combat the data imbalance in the training
set between the tumor labels and the background. No gradient was taken from
voxels with intensity less than or equal to -50, or voxels with intensity greater
than or equal to 450. We used focal loss [5] with a gamma of 2 to concentrate
on difficult-to-classify voxels. Since the segmentation of healthy kidney was ob-
served to be a much easier task than segmenting the tumor, the loss from the
tumor task was weighted 100 times more than the whole kidney and healthy
kidney tasks. We heavily oversampled training examples containing the tumor
class: each batch was a single 13*180*320 patch sampled from one of the training
examples, and patches with tumor tissue in the central slice were preferred over
slices containing no tumor, with 1 in 20 batches containing no tumor. One epoch
was 1000 patches: after 200 epochs, we observed that the classifier was failing
to detect any tumor tissue in several of the validation cases. Labelling of the
training cases was performed by interpolation, both by the challenge organisers
(in the original spacing of the KITS19 cases) and then by us (in preparing the
1mm? training data). To combat underlabeling of training examples arising from
this, we ran the classifier over all training cases, and added tumor labels where
the classifier predicted tumor but the ground truth showed healthy kidney. Af-
ter this change, we were able to detect tumor voxels in all validation cases, and
training was halted after 700 epochs.

Application of the classifier

To apply our method to a new case, the imaging was resampled to 1mm? isovox-
els. The classifier was applied to in axial, sagittal and coronal directions: owing
to the non-isotropic input volumes, it was possible to apply the classifier with-
out stitching patches even on cases with full-body imaging. Logits (network
output before applying sigmoid) were produced for each tissue type (whole kid-
ney, healthy kidney, and tumor) and each direction (sagittal, axial, coronal). For
each tissue type, we averaged over the three directions, and then resampled the
resulting maps to the resolution of the original imaging.

Postprocessing

The above pipeline leads to a logit map for the whole tumor, healthy kidney, and
tumor. A naive segmentation of the kidney and tumor can be obtained from the
classifier as follows: label all tissue with a whole kidney logit greater than zero
as kidney (label 1). Inside that kidney label, label every voxel with tumor logit
greater than heakthy logit as tumor (label 2).

This naive labeling suffers from the restricted training regimen: there are regions
of the body not seen by the classifier during training (most often the bladder,
but also distended intestines and regions of bone in the extremities) which are
incorrectly labelled as tumor. As an initial post-processing step, we identify



large connected components of well-classfied healthy kidney tissue (regions with
healthy kidney logit greater than 0.5, with volume greater than 20000 mm?).
We then restrict our attention, initially, to connected components with kidney
logit > 0 which intersect with those large regions of healthy kidney. Any tissue
within those regions with tumor logit < 0 is labelled as kidney, and any tissue
with tumor logit > 0 is labelled as tumor.

Despite our extensive attempts to combat the class imbalance in the dataset,
we still find that for many tumors the above method undersegments the tumor
class: several tumor voxels have tumor logit <0, especially in small tumors. In
an attempt to segment the full extent of the tumor, we employ a random walk
segmentation, as implemented in scipy.ndimage [1]: seeds for the random walk
are set as tissue with tumor logit > 0 in the already-identified kidney, while seeds
for the background (not tumor) class are those with tumor logit < —2 or healthy
logit > 1. These values were determined by experimentation the validation cases.
The final tumor segmentation was then given by the result of this random walk
segmentation.

Results

On our in-house test set, without postprocessing, our method achieved a mean
Dice of 0.93 on the whole kidney (labels 1 and 2), with postprocessing but with-
out random walk segmentation a mean dice of 0.97, and with full postprocessing
including random walk segmentation a mean Dice of 0.97. On the tumor itself
(label 2), without post-processing we achieve a mean Dice of 0.66, with postpro-
cessing but without the random walk segmentation a mean Dice of 0.75, and
with full post-processing a mean Dice of 0.82. Boxplots of the dice coefiicients
arising from our method can be seen in Figure 2.

Discussion
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Holdout results: kidney segmentation
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Fig. 2. Segmentation results (Dice coefficient) on the held-out training cases, as pro-
duced by the Naive algorithm (no post-processing), the Improved algorithm (with
post-processing, but without random walk segmentation of the tumor), the the Ran-
dom Walk algorithm
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